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Over the last decades, many diffuse-interface Navier–Stokes Cahn–Hilliard (NSCH) mod-
els with non-matching densities have appeared in the literature. These models claim
to describe the same physical phenomena, yet they are distinct from one another. The
overarching objective of this work is to bring all of these models together by laying down
a unified framework of NSCH models with non-zero mass fluxes. Our development is
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based on three unifying principles: (1) there is only one system of balance laws based on
continuum mixture theory that describes the physical model, (2) there is only one natural
energy-dissipation law that leads to quasi-incompressible NSCH models, (3) variations

between the models only appear in the constitutive choices. The framework presented in
this work now completes the fundamental exploration of alternate non-matching density
NSCH models that utilize a single momentum equation for the mixture velocity, but
leaves open room for further sophistication in the energy functional and constitutive
dependence.

Keywords: Navier–Stokes Cahn–Hilliard equations; phase-field models; incompressible
two-phase flow; mixture theory; thermodynamic consistency.

AMS Subject Classification: Primary: 76T99; Secondary: 35Q30, 35Q35, 35R35, 76D05,
76D45, 80A99

1. Introduction

Phase-field models have emerged as a powerful tool for describing interface prob-

lems that appear in various fields in science. These models are also termed diffuse-

interface models due to the smooth representation of the interface.6 The theory of

general diffuse-interface models in solid and fluid mechanics has been presented in

Ref. 31. Phase-field models are typically equipped with a thermodynamical frame-

work26, 28, 34, 40 and stability properties.14 A key factor in the success of phase-field

models is their ability to be directly applied in computer simulations16 ranging from

phase transitions in fluids24 to fracture mechanics.7

In the context of free-surface fluid mechanics, other popular methodologies are

the volume-of-fluid methods21 and level-set methods.32, 36 Level-set methods are

popular for incompressible flows5, 10, 41 and volume-of-fluid methods are employed

for both incompressible17, 33 and compressible flows.30, 35, 42 The main distinguish-

ing feature of a phase-field model, as compared with volume-of-fluid and level-set

models, is that the interface is determined by a physical model with a fixed interface

width. In computations with the volume-of-fluid approach often an interpolation

technique or a compression algorithm is applied near the interface, whereas level-set

methods typically use a redistancing algorithm to maintain a stable interface. Apart

from the thermodynamical structure of the underlying phase-field formulations,

redundancy of such algorithms is often the most important practical advantage of

phase-field simulations.

The phase-field model that describes incompressible isothermal two constituent

flows with non-matching densities is the Navier–Stokes Cahn–Hilliard (NSCH)

model. Over the years many NSCH models with non-matching densities have been

proposed with distinct fundamental variables for the velocity and phase-field. It is

the purpose of this paper to present a unified framework for non-matching den-

sity NSCH models which is invariant to the choice of fundamental variables. The

framework encompasses variations of existing NSCH models.

1.1. Historical overview

The first coupling between the Navier–Stokes equations, describing viscous fluid

flow, and the Cahn–Hilliard equation, describing spinoidal decomposition, has been
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established by Hohenberg and Halperin.22 They proposed the system, referred to

as model H, that reads

ρ∂tu+ ρ(u · ∇u)u− div(2ν(c)D) +∇p = −σεdiv(∇c⊗∇c), (1.1a)

divu = 0, (1.1b)

∂tc+ u · ∇c = div(m(c)∇μ), (1.1c)

μ = σε−1ϕ′(c)− σεΔc, (1.1d)

in domain Ω ⊂ R
d, with dimension d = 2, 3, both open and bounded that is occupied

with two constituents j = 1, 2. We adopt the standard notation, where x represents

the (Eulerian) position vector, t is the time, ∂t the partial time-derivative, ∇ the

gradient, div the divergence (defined as (divA)i := ∂Aik/∂xk) and Δ the Laplace

operator. Here, u is the mean velocity, ρ is the density, p is the pressure, c is the so-

called order parameter representing a concentration related quantity. Moreover, D

represents the symmetric gradient of the mean velocity, D = 1
2 (∇u+ (∇u)T ), ν(c)

is the concentration-dependent dynamic viscosity of the mixture, σ is the surface

tension coefficient and ε is an interface thickness parameter. The surface tension

coefficient is assumed constant, i.e. Marangoni-type effects are precluded in this

model. The quantity ϕ = ϕ(c) is the homogeneous free energy and m = m(c) ≥ 0 is

the mobility. In model (1.1), Eq. (1.1a) describes the linear momentum equation in

which the right-hand side, −σεdiv(∇c⊗∇c), represents a contribution of the stress

tensor that models capillary forces due to surface tension. Equation (1.1b) dictates

that the mean velocity is divergence-free. Lastly, the Cahn–Hilliard equation (1.1c)

describes the evolution of the order parameter in which the right-hand side repre-

sents the divergence of a diffusive flux, and the variable μ given by (1.1d) is often

referred to as the chemical potential.

The major limitation of model H is its assumption of constant density, i.e.

the density of the mixture as well as the density of the individual constituents is

constant. As such, this precludes the applicability of the model to problems with

large density ratios (e.g. water-air flows). Model H has been used to study the

fluid behavior at critical points of single and binary fluids. The derivation of the

model initially relied on phenomenological arguments and a rigorous derivation in

the framework of rational continuum mechanics was absent until 1996.

In that year Gurtin20 provided this missing derivation. The core ideas in this

derivation are (i) the separation of balance laws from constitutive relations, (ii) the

usage of microforce balance laws, and (iii) the selection of constitutive equations

compatible with an energy-dissipation law referred to as the second law of thermo-

dynamics (the so-called Coleman–Noll procedure). Gurtin introduces the balance of

mass per constituent while he directly presents a single momentum equation for the

mixture. In the same year Gurtin applied this procedure to present the Ginzburg–

Landau and Cahn–Hilliard equations with a derivation in a rational continuum

mechanics framework.19 Several extensions of the microforce continuum framework
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of Gurtin have been proposed, including a phase-field gradient theory for enriched

continua.15

One of the first efforts of extending model H to the case of non-matching den-

sities is the work of Lowengrub and Truskinovsky.25 Lowengrub and Truskinovsky

present the following quasi-incompressible model :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇p− div(ν(c)(2D + λ(c)(divv)I))

+ σεdiv(ρ∇c⊗∇c) = 0, (1.2a)

∂tρ+ div(ρv) = 0, (1.2b)

ρ(∂tc+ v · ∇c)− div(m∇μ) = 0, (1.2c)

μ− σ

ε

∂ϕ

∂c
+
σε

ρ
div(ρ∇c) + p

ρ2
∂ρ

∂c
= 0, (1.2d)

with free energy density per unit volume ρσ(ε−1ϕ(c) + ε|∇c|2/2) and m ≥ 0 a

non-degenerate mobility (the mobility is called non-degenerate if it is constant

and degenerate if it vanishes in the single-fluid regime). The mixture density ρ is

ρ = ρ̃1 + ρ̃2 and the mass-averaged velocity v is given by ρv = ρ̃1v1 + ρ̃2v2 where

ρ̃j = ρcj represents the variable density of constituent j with cj the concentration of

constituent j. In comparison with model H, this model has two key differences. First,

the incompressibility constraint (1.1b) is replaced by the conservation of mass of the

mixture (1.2b). Expanding the divergence in (1.2b) reveals the quasi-incompressible

nature of the model:

divv +
1

ρ

∂ρ

∂c
(∂tc+ v · ∇c) = 0. (1.3)

Second, the evolution equation of the order parameter (1.2c) explicitly contains a

density which distinguishes it from the evolution equation (1.1c). It seems chal-

lenging to design algorithms that solve (1.2) and often a simplified version of the

model is employed, see e.g. Ref. 23. The challenge is often linked to the quasi-

incompressible nature of the model.3 We note that recently a numerical method for

a reformulation of the model (1.2) has been proposed in Ref. 18.

Noteworthy alternative models have been proposed by Boyer9 and Ding et al.12

Both models deviate from the model of Lowengrub and Truskinovsky25 in that they

use a mean velocity that is fully incompressible:

divu = 0. (1.4)

This mean velocity, defined as u = φ1v1 + φ2v2 where φj is the volume fraction of

constituent j, is referred to as the volume-averaged velocity. Actually the model12

is, apart from the variable density, identical to the model H (model (1.1)). Analo-

gously to Gurtin20 and Lowengrub and Truskinovsky,25 the starting point of Ding

et al.12 consists of the individual mass balance equations of the constituents and

the momentum equation of the mixture. In contrast, the point of departure adopted
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in the model of Boyer9 is composed of individual mass and momentum balance

equations, which leads to a different form of the momentum and phase equations.

Unfortunately the models Refs. 9 and 12 are not presented with some (approx-

imate) form of the second law of thermodynamics. This observation has led to the

development of the model of Abels et al.3 which reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρu) + div(ρu⊗ u) + div

(
u⊗ ρ1 − ρ2

2
m(φ)∇μ

)
+∇p

− div(2ν(φ)D) + σεdiv(∇φ⊗∇φ) = 0, (1.5a)

divu = 0, (1.5b)

∂tφ+ u · ∇φ− div(m(φ)∇μ) = 0, (1.5c)

μ− σ

ε

∂ϕ

∂φ
+ σεΔφ = 0, (1.5d)

and is presented with some form of the second law of thermodynamics. This form

of the second law is distinct from what appears in Lowengrub and Truskinovsky25

in the sense that a different kinetic energy is used. This model also uses the

volume-averaged mean velocity for the velocity of the mixture and makes use of

the difference of volume fractions as order parameter. The distinguishing feature

of (1.5) is the, somehow surprising, additional convective term in the momentum

equation.

Since then several quasi-incompressible models that employ the difference of

volume fractions as order parameter have been proposed. Noteworthy contribu-

tions are the work of Shen et al.,37 Aki et al.4 and Shokrpour Roudbari et al.,38

which are all presented with an approximate form of the second law. The models

Refs. 4 and 38 have been derived in a similar way, namely, using balance laws of

the individual constituents and the Coleman–Noll procedure. The derivation of the

model of Shen et al. follows different considerations. An important contribution in

the work of Shokrpour Roudbari et al.38 is the observation that, up to the defi-

nition of the mobility and the definition of mass fluxes, the models4, 37, 38 are all

equivalent.

1.2. Objective and main results

It is obvious that the literature on NSCH models is divided. The various proposed

models (almost) all aim to represent the same physical behavior but are either

clearly different or are presented in a (sometimes seemingly) different form. The

four key flavors are

(1) the mixture velocity: mass-averaged velocity (v) or a volume-averaged velocity

(u)

(2) the order parameter: based on volume fractions (φ) or concentration (c)
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Table 1. Overview of various NSCH models. The columns indicate the mean veloc-
ity (either mass-averaged v or volume-averaged u), the order parameter (either

volume fraction based φ or concentration based c), the type of the free energy
(either volume-measure-based Ψ or mass-measure-based ψ), the type of the mobility
(either degenerate or non-degenerate) and lastly whether the model is equipped with
an energy-dissipation law. The model of Abels et al. is presented with both non-de-
generate and degenerate mobilities. Additionally, the energy-dissipation law of that
model differs from that of the other models, due to the usage of the volume-averaged
velocity, and we indicate this by the symbol ★.

Model V
el
oc
ity

O
rd
er
pa
ra
m
et
er

Fr
ee
en
er
gy

M
ob
ili
ty

E
ne
rg
y
la
w

Abels et al.3 u φ Ψ non-deg./degen. ★

Aki et al.4 v φ Ψ non-deg. ✓

Boyer9 u φ Ψ degen. ✗

Ding et al.12 u φ Ψ degen. ✗

Lowengrub and Truskinovsky25 v c ψ non-deg. ✓

Shen et al.37 v φ Ψ non-deg. ✓

Shokrpour Roudbari et al.38 v φ Ψ non-deg. ✓

(3) the type of the free energy: volume-measure-based (Ψ) or a mass-measure-based

(ψ)

(4) the mobility: non-degenerate (i.e. constant) or degenerate (i.e. it vanishes in

the single-fluid regime)

We provide a summary of several existing models in Table 1.

Even though each of these works has provided new and useful insights into

diffuse-interface modeling, and some provide elegant and physically sound deriva-

tions, the current status is far from optimal. We have two main objections:

(1) the systems of balance laws of the various models are distinct before constitutive

choices have been applied,

(2) the energy-dissipation laws of the models are not identical.

Since all the models represent the same physics, we lay down the three unifying

principles:

(1) there is only one system of continuum mechanics balance laws that describes

the physical model,

(2) there is only one natural energy-dissipation law that leads to quasi-

incompressible NSCH models,

(3) variations between the models only appear in the constitutive choices.
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The main objective of this work is to lay down a unified framework of incompress-

ible NSCH models with non-zero mass fluxes on the basis of these three unifying

principles. In particular, we establish one incompressible NSCH system of balance

laws and show that many alternate forms are connected via variable transforma-

tions. Two (equivalent) formulations that result after the constitutive choices are

(i) a formulation in terms of the mass-averaged velocity v:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇p+ div

(
∇φ⊗ ∂Ψ

∂∇φ + (μφ−Ψ)I

)

− div(ν(2D+ λ(divv)I)) − ρg = 0, (1.6a)

∂tρ+ div(ρv) = 0, (1.6b)

∂tφ+ div(φv) − div(Mv∇(μ+ αp)) + ζm(μ+ αp) = 0, (1.6c)

μ− ∂Ψ

∂φ
+ div

(
∂Ψ

∂∇φ
)

= 0, (1.6d)

and (ii) a formulation in terms of the volume-averaged velocity u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρu+ J̃u) + div

(
ρu⊗ u+ J̃u ⊗ u+ u⊗ J̃u +

1

ρ
J̃u ⊗ J̃u

)

+∇p+ div

(
∇φ⊗ ∂Ψ

∂∇φ + (μφ−Ψ)I

)

−div(ν(2∇s(u+ ρ−1J̃u) + λ(div(u+ ρ−1J̃u))I)) − ρg = 0, (1.7a)

divu− βγ = 0, (1.7b)

∂tφ+ u · ∇φ− div(Mu∇(μ+ αp)) +
ρ

2ρ1ρ2
m(μ+ αp) = 0, (1.7c)

μ− ∂Ψ

∂φ
+ div

(
∂Ψ

∂∇φ
)

= 0, (1.7d)

with J̃u = −(ρ1 − ρ2)M
u∇(μ + αp)/2. Here, Mv = Mv(φ,∇φ, μ,∇μ, p),

Mu(φ,∇φ, μ,∇μ, p) and m = m(φ, μ, p) are degenerate mobilities, ν = ν(φ) is the

dynamic viscosity, p is the pressure, g is the gravitational acceleration, ρ1 and ρ2
are the constant specific densities of the constituents and we have introduced the

constants α = (ρ2−ρ1)/(ρ1+ρ2), β = (ρ2−ρ1)/(2ρ1ρ2) and ζ = (ρ1+ρ2)/(2ρ1ρ2).

We refer the reader for details on the specific choices and scaling of the mobility

parameters, and free energy to Refs. 3, 4 and 20. Moreover, we show that (i) many

existing models are identical (up to the definition of the mobility), (ii) existing

volume-averaged velocity based models are inconsistent with the mixture theory

framework, however have a consistent rectification. As a side observation it turns

out that, within our framework, models with a non-degenerate mobility are incom-

patible in the single-fluid region (see Remark 3.12).
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1.3. Plan of the paper

The structure of the remainder of the paper is as follows. In Sec. 2, the system of

balance laws is established. We present the framework of balance laws for binary

mixtures of incompressible viscous fluids. Starting from constituent balance laws,

we use mixture theory to derive the balance laws of the mixtures. Additionally, we

present some new and important identities and evolution equations. In Sec. 3, we

perform constitutive modeling via the Coleman–Noll procedure. Here we highlight

the modeling assumptions of the NSCH model from the viewpoint of mixture theory.

Additionally, we show that applying the Coleman–Noll procedure to alternative

derivations provides the same modeling restriction. In Sec. 4, we discuss the relation

of the novel model to existing NSCH models. Finally, in Sec. 5, we summarize our

findings and present some possible further research directions.

2. Mixture Theory

In this section, we lay down the mixture theory as well as the necessary definitions.

In this work, we focus on incompressible isothermal constituents, which we will

specify in Sec. 2.1. We restrict ourselves to the case of binary mixtures for the sake

of simplicity and note that the multi-component case is a straightforward extension.

This section is fully compatible (i.e. no approximations are introduced) with the

mixture theory metaphysical principles proposed by Truesdell43:

(1) All properties of the mixture must be mathematical consequences of properties

of the constituents.

(2) So as to describe the motion of a constituent, we may in imagination isolate it

from the rest of the mixture, provided we allow properly for the actions of the

other constituents upon it.

(3) The motion of the mixture is governed by the same equations as in a single

body.

Section 2.1 provides the necessary (kinematic) definitions. Sections 2.2 and 2.3, we

introduce the balance laws of the individual constituents and subsequently, relying

on metaphysical principles of Ref. 44, balance laws of the mixtures. Finally, in

Sec. 2.4, we present alternative, but equivalent, formulations of the balance laws,

diffusive fluxes and stress tensors.

2.1. Preliminaries

In domain Ω, we denote with Xj the position of a particle of constituent j in

the Lagrangian (reference) configuration. Denoting the position of the mixture in

the Eulerian frame by x, we identify its relation to the initial configurations of the

constituents with an invertible deformation map χj :

x := χj(Xj , t). (2.1)
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The velocity of constituent j is given by

vj(x, t) := ∂tχj(Xj , t) = ∂tχj(χ
−1
j (x, t), t). (2.2)

Consider now an arbitrary control volume V ⊂ Ω around spatial position x in the

mixture that contains the massesMj =Mj(V ) of the constituents j = 1, 2 at time t.

We denote the total mass in V as M =M(V ) =
∑

j Mj(V ). We define the partial

mass density ρ̃j as the mass of constituent j per unit volume of the mixture as

ρ̃j(x, t) := lim
|V |→0

Mj(V )

|V | , (2.3)

where |V | denotes the measure of control volume V . The mass density of the total

mixture at position x and time t is now defined as the sum of the partial mass

densities of the constituents:

ρ(x, t) :=
∑
j

ρ̃j(x, t). (2.4)

Next, we introduce Vj ⊂ V as the control volume occupied by constituent j. We

define the volume fraction of constituent j as

φj(x, t) := lim
|V |→0

|Vj |
|V | , (2.5)

where |Vj | denotes the measure of Vj . We assume that∑
j

φj = 1, (2.6)

and thus exclude the existence of interstitial voids. Additionally, we introduce the

concentration of constituent j as

cj(x, t) := lim
|V |→0

Mj(V )

M(V )
. (2.7)

The above definitions (2.3), (2.4) and (2.7) imply the relation:

ρ̃j(x, t) = ρ(x, t)cj(x, t). (2.8)

Next, we define the specific mass density ρj as the mass of constituent j per volume

occupied by that constituent as

ρj(x, t) := lim
|Vj |→0

Mj(V )

|Vj | . (2.9)

We assume ρj(x, t) > 0. From the definitions (2.3), (2.5) and (2.9) we deduce

ρ̃j(x, t) = ρj(x, t)φj(x, t). (2.10)

Additionally, we have the relation: ∑
j

cj = 1. (2.11)
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In general the specific mass densities ρj may vary due to compressibility and thermal

effects. In this paper, we restrict to constant specific mass densities ρj representing

incompressible isothermal constituents. The momentum associated with constituent

j is:

mj(x, t) := ρ̃j(x, t)vj(x, t). (2.12)

The momentum of the mixture is the sum of that of the individual constituents:

m(x, t) :=
∑
j

mj(x, t). (2.13)

The mixture velocity v is a mass-averaged velocity or barycentric velocity and is

identified via the relation:

m(x, t) = ρ(x, t)v(x, t). (2.14)

The diffusion velocity or peculiar velocity of constituent j is the constituent velocity

relative to the gross motion of the mixture:

wj(x, t) := vj(x, t) − v(x, t). (2.15)

An immediate consequence is the observation that the superposition of the momenta

relative to the gross motion of the mixture vanishes:∑
j

ρ̃jwj =
∑
j

ρ̃jvj −
∑
j

ρ̃jv = 0. (2.16)

From (2.16), we deduce the identity:∑
j

cjwj = 0, (2.17)

that will be employed later in this section. We now introduce two different material

derivatives, one that follows the individual motion of constituent j and one that

follows the mean motion, respectively, given by

ψ̀ = ∂tψ+ vj · ∇ψ, (2.18a)

ψ̇ = ∂tψ+ v · ∇ψ. (2.18b)

We define the jump and average of a constituent-related (vector-valued) quantity

as

[[w]] :=
1

2
(w1 −w2), (2.19a)

{w} :=
1

2
(w1 +w2), (2.19b)
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respectively, where the subscripts refer to the constituent numbers. Lastly, we intro-

duce the constants:

α :=
ρ2 − ρ1
ρ1 + ρ2

= − [[ρ]]

{ρ} , (2.20a)

β :=
ρ2 − ρ1
2ρ1ρ2

= − [[ρ]]

ρ1ρ2
, (2.20b)

ζ :=
ρ1 + ρ2
2ρ1ρ2

=
{ρ}
ρ1ρ2

. (2.20c)

2.2. Balance laws of single constituents

Denoting by γj the mass supply of constituent j due to reaction, we introduce the

local evolution equation of the mass of constituent j:

∂tρ̃j + div(ρ̃jvj) = γj . (2.21)

The associated convective form is

`̃ρj + ρ̃jdivvj = γj . (2.22)

We assume that mass fluxes γj vanish in the single fluid region (i.e. when φj = ±1).

As a consequence, the mass balance in the single fluid region reads:

∂tρj + div(ρjvj) = 0, for φj = 1. (2.23)

Since the specific constituent densities ρj are constant we deduce the incompressible

flow constraint:

divvj = 0, for φj = 1. (2.24)

The linear momentum of constituent j satisfies the balance law:

∂tmj + div(mj ⊗ vj) = divTj + ρ̃jbj + πj + vjγj . (2.25)

Here, Tj is the Cauchy stress tensor of constituent j and bj is the external body

force. The term πj represents the momentum supply of constituent j by the other

constituents (see e.g. Ref. 44). The balance of angular momentum implies that the

Cauchy stress tensors of constituents have the following form:

Nj = Tj −TT
j , (2.26)

where Nj represents the intrinsic moment of momentum vector. Note that the last

member on the right-hand side of (2.25) vanishes when switching to a convective

form with the aid of the local mass balance (2.21):

ρ̃j v̀j = divTj + ρ̃jbj + πj . (2.27)
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2.3. Balance laws of mixtures

The balance of mass of the mixture density follows by summing (2.21) over the

constituents:

∂tρ+ div(ρv) = 0, (2.28)

where we have postulated the sum of the mass fluxes to vanish:∑
j

γj = 0. (2.29)

The mixture velocity v is in general not divergence-free and this property is in liter-

ature referred to as a quasi-incompressible mixture.25 The postulate (2.29) complies

with the third metaphysical principle of mixture theory and precludes the creation

of mixture mass. We denote the difference of the mass fluxes by γ = γ1 − γ2, which

provides:

γ1 =
1

2
γ, γ2 = −1

2
γ. (2.30)

To proceed, we introduce the order parameters (phase-fields) based on the volume

fractions and concentrations of the individual constituents: φ = φ1 − φ2 ∈ [−1, 1]

and c = c1 − c2 ∈ [−1, 1]. By recalling (2.6) and (2.11), we deduce the relations:

φ1 =
1 + φ

2
, φ2 =

1− φ

2
, (2.31a)

c1 =
1 + c

2
, c2 =

1− c

2
. (2.31b)

Additionally, the density of the mixture ρ can be expressed in terms φ and c via

ρ = ρ̂(φ) = ρ̌(c) where ρ̂(φ) and ρ̌(c) are defined as

ρ̂(φ) = ρ1
1 + φ

2
+ ρ2

1− φ

2
, (2.32a)

1

ρ̌(c)
=

1

ρ1

1 + c

2
+

1

ρ2

1− c

2
. (2.32b)

The relation between φ and c is given by

c =
[[ρ]] + {ρ}φ
{ρ}+ [[ρ]]φ

, φ =
−[[ρ]] + {ρ} c
{ρ} − [[ρ]]c

, c′(φ) =
ρ1ρ2
ρ2

, φ′(c) =
ρ2

ρ1ρ2
. (2.33)

The diffusive fluxes are defined as

hv := φ1w1 − φ2w2, (2.34a)

Jv := ρ̃1w1 − ρ̃2w2. (2.34b)

The evolution equations of the order parameters φ and c follow from taking the

difference of the mass balance equations of the constituents (2.21):

φ̇+ φdivv + divhv = ζγ, (2.35a)

ρċ+ divJv = γ, (2.35b)
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where we recall that the dot ˙ denotes the material derivative with respect to the

mixture velocity v. Next, to obtain the linear momentum equation of the mixture

we take the sum of (2.25):

∂tm+ div(m ⊗ v) = divT+ ρb, (2.36)

where the Cauchy stress tensor and the body force of the mixture are, respectively,

identified as

T :=
∑
j

Tj − ρ̃jwj ⊗wj , (2.37a)

ρb :=
∑
j

ρ̃jbj . (2.37b)

Here, we have postulated the balance of momentum supplies:∑
j

πj + γjvj = 0, (2.38)

which is consistent with the third metaphysical principle of mixture theory and pre-

cludes the creation of mixture momentum. We denote the difference of the growth

of linear momentum of the constituents by p := (π1 + γ1v1)− (π2 + γ2v2), which

leads to:

π1 + γ1v1 =
1

2
p, π2 + γ2v2 = −1

2
p. (2.39)

Symmetry of the dyadic product implies symmetry of the Cauchy stress tensor of

the mixture:

TT = T, (2.40)

where we have postulated the balance of the intrinsic moment of momentum vectors:∑
j

Nj = 0. (2.41)

The corresponding convective form reads:

ρv̇ = divT+ ρb. (2.42)

2.4. Non-typical identities and evolution equations

Apart from the mixture velocity (2.14) one might define other mean velocities. A

typical example of another mean velocity is the volume-averaged velocity u given

by

u(x, t) :=
∑
j

φj(x, t)vj(x, t). (2.43)

We define the peculiar velocity relative to the volume-averaged velocity:

ωj(x, t) := vj(x, t) − u(x, t), (2.44)
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which has the consequence: ∑
j

φj(x, t)ωj(x, t) = 0. (2.45)

A direct consequence of the constituent mass balance equations (2.21) and (2.45)

is the relation:

divu = βγ. (2.46)

Thus, in absence of mass fluxes (γ = 0), the volume-averaged velocity inherits the

single-constituent solenoidal property of the individual constituents. We addition-

ally introduce the diffusive fluxes with respect to the volume-averaged velocity:

hu := φ1ω1 − φ2ω2, (2.47a)

Ju := ρ̃1ω1 − ρ̃2ω2, (2.47b)

J̃u := ρ̃1ω1 + ρ̃2ω2. (2.47c)

Substitution of the mixture velocity (2.14) and the volume-averaged velocity (2.43)

into (2.47c) provides the key identity that reveals the difference between the momen-

tum m and ρu:

m = ρv = ρu+ J̃u. (2.48)

Remark 2.1. (Mixture momentum) The mixture momentum m is the sum of the

constituent momenta mj and thus complies with the first metaphysical principle of

mixture theory. Relation (2.48) distinguishes the momentum of the mixture m from

ρu. We return to this observation later in this section in the context of volume-

averaged velocity NSCH models. �
Substituting the key identity (2.48) and the property of the velocity field u

(2.46) into (2.28) provides the alternative form of the mixture mass balance:

◦
ρ+ divJ̃u = −ρβγ, (2.49)

where ◦ denotes the material derivative with respect to the volume-averaged velocity

u. Furthermore, substituting the volume-averaged velocity u and diffusive fluxes

(2.47) into (2.35) yields the alternative forms of the phase equations:

◦
φ+ divhu =

ρ

2ρ1ρ2
γ, (2.50a)

ρ
◦
c− cdivJ̃u + divJu = γ. (2.50b)

With the aim of unifying the various formulation of NSCH models in Sec. 3, we

relate the various diffusive fluxes in the following lemma.
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Lemma 2.1. (Relations diffusive fluxes) The various diffusive fluxes are related by

the identities :

J̃u = [[ρ]]hu, Ju = {ρ}hu, hv =
{ρ}
ρ

hu, Jv =
ρ1ρ2
ρ

hu. (2.51)

Proof. These identities are all consequences of (2.17) and (2.45). For example, to

obtain the first identity, partition J̃u as

J̃u = ρ̃1ω1 + ρ̃2ω2

=
ρ1
2
(φ1ω1 − φ2ω2)− ρ2

2
(φ1ω1 − φ2ω2)

+
ρ1
2
(φ1ω1 + φ2ω2) +

ρ2
2
(φ1ω1 + φ2ω2). (2.52)

The first line collapses to [[ρ]]hu and the second line vanishes due to (2.45).

Analogously to the mass balance and phase equations, we may also formulate

the momentum balance in terms of the volume-averaged velocity. To this purpose,

we first introduce the following lemma.

Lemma 2.2. (Relation peculiar velocities to stress tensor) We have the identity:

∑
j

ρ̃jwj ⊗wj =
∑
j

ρ̃jωj ⊗ ωj − 1

ρ
J̃u ⊗ J̃u. (2.53)

Proof. Identity (2.53) is a direct consequence of the following two identities:∑
j

ρ̃jwj ⊗wj =
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ v, (2.54a)

∑
j

ρ̃jωj ⊗ ωj =
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ v +
1

ρ
J̃u ⊗ J̃u. (2.54b)

To see the first identity, we substitute the definition of the diffuse-velocity wj (2.15)

into the left-hand side of (2.54a) and expand:∑
j

ρ̃jwj ⊗wj =
∑
j

ρ̃j(vj − v) ⊗ (vj − v)

=
∑
j

(ρ̃jvj ⊗ vj − ρ̃jvj ⊗ v − ρ̃jv ⊗ vj + ρ̃jv ⊗ v)

=
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ v − ρv ⊗ v + ρv ⊗ v

=
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ v. (2.55)
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The second follows in the same fashion via the substitution of the definition of ωj

(2.44) and the key identity (2.48) into the left-hand side of (2.54b):∑
j

ρ̃jωj ⊗ ωj =
∑
j

ρ̃j(vj − u)⊗ (vj − u)

=
∑
j

(ρ̃jvj ⊗ vj − ρ̃jvj ⊗ u− ρ̃ju⊗ vj + ρ̃ju⊗ u)

=
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ u− ρu⊗ v + ρu⊗ u

=
∑
j

ρ̃jvj ⊗ vj − ρv ⊗ v +
1

ρ
J̃u ⊗ J̃u. (2.56)

By substituting the key identity (2.48) into the mixture linear momentum equa-

tion (2.36) and making use of Lemma 2.2, one can show that the mixture linear

momentum equation formulated in terms of the volume-averaged velocity takes the

following form:

∂t(ρu+ J̃u) + div

(
ρu⊗ u+ J̃u ⊗ u+ u⊗ J̃u +

1

ρ
J̃u ⊗ J̃u

)

= divT+ ρg. (2.57)

Analogously to taking the difference of the constituent mass conservation equa-

tions, we may evaluate the difference of the constituent linear momentum equations.

This provides a balance law for the diffusive flux. To do so, we first note that by

(2.22) and (2.27) we can rewrite the constituent balance law of linear momentum as:

(ρ̃jvj )̀ = divTj + ρ̃jbj + πj + γjvj − ρ̃jvjdivvj . (2.58)

Denoting Jv
j = ρ̃jwj , we have the identity:

(ρ̃jvj )̀ = J̀v
j + `̃ρjv + (∇v)Jv

j + ρ̃j v̇. (2.59)

Substituting this into (2.58) provides:

J̀v
j + (∇v)Jv

j = divTj + ρ̃jbj + πj + γjvj − `̃ρjv − ρ̃j v̇ − ρ̃jvjdivvj . (2.60)

By expanding the peculiar derivative as

J̀v
j = J̇v

j +wj · ∇Jv
j

= J̇v
j + div(Jv

j ⊗wj)− (divvj)J
v
j + (divv)Jv

j , (2.61)

we arrive at

J̇v
j + (∇v + (divv)I)Jv

j = div(Tj − Jv
j ⊗wj) + ρ̃jbj

+πj + γjvj − γjv − ρ̃j v̇, (2.62)

where we have used the identity:

− `̃ρjv + (divvj)J
v
j − ρ̃jvjdivvj = −γjv. (2.63)
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By substituting for the last member in (2.62) the mixture linear momentum evolu-

tion equation (2.42) in the form

ρ̃j v̇ = cjdivT+ ρ̃jb, (2.64)

we obtain

J̇v
j + (∇v + (divv)I)Jv

j = div(Tj − Jv
j ⊗wj)− cjdivT

+πj + γjvj − γjv + ρ̃jbj − ρ̃jb. (2.65)

Note that in case the body force is the same for all components, i.e. bj = b, the

body force drops out of the evolution equation (2.65). By subtracting (2.65) for

constituent 2 from that of constituent 1 we arrive at the evolution equation of the

diffusive flux :

J̇v + (∇v + (divv)I)Jv = div

(
T1 −T2 +

ρ̃1 − ρ̃2
4ρ̃1ρ̃2

Jv ⊗ Jv

)
− cdivT

+ ρ̃1(b1 − b)− ρ̃2(b2 − b) + p− γv, (2.66)

where we have utilized the identity:

−Jv
1 ⊗w1 + Jv

2 ⊗w2 =
ρ̃1 − ρ̃2
4ρ̃1ρ̃2

Jv ⊗ Jv, for φ1φ2 	= 0, (2.67)

that results from (2.17). This term vanishes for φ1φ2 = 0.

With the aid of Lemma 2.1, the key identity (2.48) and the mixture mass balance

(2.28), one can formulate the evolution equation of the diffusive flux in terms of Ju.

First, the material derivative of the diffusive flux Jv may be expressed in terms of

Ju via:

J̇v = ζ−1ρ−1(J̇u − αJudiv(ρ−1Ju) + βγJu). (2.68)

Next, we may express the material derivative J̇u as

J̇u =
◦
Ju − αρ−1Ju · ∇Ju, (2.69)

and substitution into (2.68) provides:

J̇v = ζ−1ρ−1(
◦
Ju − αdiv(ρ−1Ju ⊗ Ju) + βγJu). (2.70)

Thus the evolution equation of Ju may be written as

◦
Ju − αdiv(ρ−1Ju ⊗ Ju) + βγJu + (∇(u− αρ−1Ju) + div(−αρ−1Ju))Ju

= ζρ

(
div

(
T1 −T2 + ζ−2ρ−2 ρ̃1 − ρ̃2

4ρ̃1ρ̃2
Ju ⊗ Ju

)
− cdivT

+ ρ̃1(b1 − b)− ρ̃2(b2 − b) + p− γv). (2.71)

Remark 2.2. (Mixture momentum equation) An equivalent form of (2.57) has

appeared in the Ph.D. thesis of Simsek.39 To the best knowledge of the authors,

the linear mixture momentum equation of NSCH models formulated in terms of
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the volume-averaged velocity appears in two distinct forms. The first is of the form

(2.36) with u instead of the mixture velocity v and ρu instead of m. The other

proposed by Abels et al.,3 follows, as observed by Simsek,39 when taking
◦
Ju = 0 in

(2.57). From the standpoint of mixture theory, the first class relies on the hidden

assumption that all the terms containing J̃u vanish, whereas the model of Abels

et al. contains the hidden assumption
◦
Ju = 0. Both assumptions are incompatible

with (2.66) and the linear mixture momentum equation in these models does not

match with mixture theory. �
Remark 2.3. (Evolution equation diffusive flux) The evolution equation of the

diffusive flux seems to be not well known in the phase-field community. We note

however that it was first derived in 1975 by Müller29 and revisited in e.g. Refs. 27

and 28. �
To summarize, in agreement with the first unification principle, we have obtained

the following equivalent formulations of the same model, one formulated in terms

of the mixture velocity v:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v)− divT− ρg = 0, (2.72a)

∂tρ+ div(ρv) = 0, (2.72b)

J̇v + (∇v + (divv)I)Jv − div

(
T1 −T2 +

ρ̃1 − ρ̃2
4ρ̃1ρ̃2

Jv ⊗ Jv

)
+ cdivT− ρ̃1(b1 − b) + ρ̃2(b2 − b)− (p− γv) = 0, (2.72c)

with the evolution equation of an order parameter

either: φ̇+ φdivv + divhv − ζγ = 0, (2.72d)

or: ρċ+ divJv − γ = 0, (2.72e)

and one formulated in terms of the volume-averaged velocity u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρu+ J̃u) + div

(
ρu⊗ u+ J̃u ⊗ u+ u⊗ J̃u +

1

ρ
J̃u ⊗ J̃u

)
− divT− ρg = 0, (2.73a)

divu− βγ = 0, (2.73b)
◦
Ju − αdiv(ρ−1Ju ⊗ Ju) + βγJu

+(∇(u− αρ−1Ju) + div(−αρ−1Ju))Ju

−βρ
α

(
div

(
T1 −T2 + α2β−2ρ−2 ρ̃1 − ρ̃2

4ρ̃1ρ̃2
Ju ⊗ Ju

)
− cdivT

+ ρ̃1(b1 − b)− ρ̃2(b2 − b) + p− γv

)
= 0, (2.73c)

with the evolution equation of an order parameter,

either:
◦
φ+ divhu − ρ

2ρ1ρ2
γ = 0, (2.73d)

or: ρ
◦
c− cdivJ̃u + divJu − γ = 0. (2.73e)
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3. Constitutive Modeling

In this section, we discuss the constitutive modeling. We will use the Coleman–Noll

procedure11 to obtain constitutive equations that guarantee an energy-dissipation

equation. Section 3.1 provides the necessary definitions and assumptions. In Sec. 3.2,

we establish the constitutive modeling restriction. Then, in Sec. 3.3, we discuss

the equivalence of alternative modeling restrictions. The actual selection of the

constitutive models appears in Sec. 3.4.

3.1. Definitions, assumptions and modeling choices

We make the following simplification assumptions (S):

• the kinetic energies of the constituents are negligible when computed relative to

the gross motion of the constituent.

• the body force acting on the constituents is a constant gravitational force, i.e.

bj = b = g = −gj with g constant and j the vertical unit vector.

We define the total energy E associated with the system of balance laws as the sum

of the Helmholtz free energy, kinetic energy and gravitational energy:

E (φ,v) =

∫
R(t)

(Ψ + K (R(t)) + G (R(t))) dv. (3.1)

Here, R = R(t) denotes an arbitrary time-dependent control volume in Ω with

volume element dv and unit outward normal ν that is transported by v (and thus

the normal velocity of ∂R(t) is v · ν). The kinetic and gravitational energies are

given by

K (R(t)) =
1

2
ρ‖v‖2, (3.2a)

G (R(t)) = ρgy. (3.2b)

Remark 3.1. (Free energy) The free energy Ψ is defined with respect to the vol-

ume element dv. We call this free energy a volume-measure-based free energy. The

common alternative is to introduce a free energy ψ with respect to the mass element

ρdv. This free energy is referred to as a mass-measure-based free energy. Through-

out this paper, we use Ψ and ψ for volume-measure-based, and mass-measure-based

free energies, respectively.

Remark 3.2. (Deviation from mixture theory) At this point, we deviate from

mixture theory of rational mechanics laid down by Truesdell.43 Specifically, we

diverge from mixture theory in that the first metaphysical principle is violated.

Namely, mixture theory dictates that the kinetic energy of the mixture KM is the

superposition of the individual kinetic energies of the constituents:

KM =
∑
j

Kj. (3.3)
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A straightforward substitution of the mixture quantities ρ and ρv reveals:

KM = K +
∑
j

1

2
ρ̃j‖wj‖2, (3.4)

in which the second member represents the kinetic energy of the constituents rel-

ative to the gross motion of the constituent. Remark that the second member

vanishes in the single constituent and thus the discrepancy appears solely in the

interface region. The simplification assumption (S ) requires the vanishing of the

second member. �
Remark 3.3. (Simplification assumption) The first part of the simplification

assumption (S ) is closely related to the one adopted by Gurtin20 which states: ‘the

momenta and kinetic energies of the constituents are negligible when computed rel-

ative to the gross motion of the constituent’. We recall that the first part is not an

assumption since the momenta relative to the gross motion of the constituent is

absent as stated in (2.16). �
Remark 3.4. (Kinetic energy volume-averaged velocity models) The kinetic

energy of diffuse-interface models formulated in terms of the volume-averaged veloc-

ity u is taken as ρ‖u‖2/2, see e.g. Ref. 3. Just as using K instead of the kinetic

energy of the mixture KM , see Remark 3.2, the mismatch exclusively occurs in the

interface region. An important difference is that a relation like (3.4), in which the

kinetic energy of the mixture is the sum of the approximate kinetic energy and a

kinetic energy of with respect to the gross motion of the constituent, does not hold.

Instead we have the relation:

KM =
1

2
ρ‖u‖2 +

∑
j

1

2
ρ̃j‖wj‖2 + 1

2ρ
J̃u · J̃u + J̃u · u, (3.5)

which follows from the identity relation (2.48) and reveals a non-obvious approxi-

mation of the kinetic energy of the mixture by ρ‖u‖2/2. The last term in (3.5) is not

guaranteed positive and thus does not represent a kinetic energy relative to some

different velocity. Relation (2.48) reveals that the kinetic energy K formulated in

terms of the volume-averaged velocity reads:

K (R(t)) =
(ρu+ J̃u) · (ρu+ J̃u)

2ρ
. (3.6)

�
We proceed with selecting the volume fraction difference φ as order parameter

and postulating the free energy to pertain to the constitutive class:

Ψ = Ψ̂(φ,∇φ,D), (3.7)

where we recall that D is the symmetric gradient of the mixture velocity:

D =
1

2
(∇v + (∇v)T ). (3.8)
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Next, we define a chemical potential-like quantity in the usual way as

μ̂ :=
∂Ψ̂

∂φ
− div

∂Ψ̂

∂∇φ. (3.9)

In the phase-field community this is sometimes referred to as the Fréchet (or vari-

ational) derivative of the total Helmholtz free energy. We postpone the selection of

the constitutive classes of the stress tensor, diffusive flux and the mass flux, denoted

T̂, ĥv and γ̂, to the end of Sec. 3.2. With the aim of deriving NSCH models, we

postulate the energy-dissipation law:

d

dt
E (φ,v) = W (R(t)) − D(R(t)), (3.10)

where W (R(t)) is the rate of work performed by macro- and micro stresses coming

through the boundary ∂R(t) and D(R(t)) is the dissipation for which we demand

D(R(t)) ≥ 0.

Remark 3.5. (Arbitrariness of modeling choices) The choice of working with the

volume fraction difference φ as the order parameter seems arbitrary. One could

instead work with the concentration difference c. Additionally, one may work with

a mass-measure-based free energy instead of a volume-measure-based free energy.

In Sec. 3.3, we discuss the relation of the modeling choices in detail. �
Remark 3.6. (Constitutive class diffusive flux) From the viewpoint of mixture

theory, the usage of a constitutive class for the diffusive flux should come as a

surprise. Namely, in Sec. 2, we have established an evolution equation for the mass

diffusion Jv, i.e. (2.66). Here, we discard the PDE (2.66). This is an approximation

of the mixture theory framework, or at least, it is not obvious how it fits in the

framework. This approximation however is essential in order to work with a reduced

model of NSCH type. In other words, without the approximation one does not

retrieve an NSCH-type model. �
Remark 3.7. (Energy-dissipation law) The energy-dissipation statement is a nec-

essary and core element in the derivation of NSCH models. Equation (3.10) is closely

linked to the first law of thermodynamics whereas the requirement D(R(t)) ≥ 0

is associated with the second law of thermodynamics. In the literature on NSCH

models the energy-dissipation law is often called the second law of thermodynamics

and models that satisfy it are referred to as thermodynamically consistent. How-

ever, we note that the energy-dissipation statement is not obviously compatible

with with the second law of thermodynamics presented in mixture theory, see e.g.

Ref. 43. As such, referring to NSCH models as thermodynamically consistent is not

justified. We refer to Refs. 4 and 13 for some remarks on approximations in the

energy-dissipation statement. �
Remark 3.8. (Rate of work term) By using concepts like the microforce balance,

the rate of work term may be already defined at this point, see Ref. 20. �
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Remark 3.9. (Alternative modeling approach) Instead of working with constitu-

tive classes and the Coleman–Noll procedure, an alternative is to postulate the

dissipation, see Ref. 26. �

3.2. Derivation of the constitutive modeling restriction

We proceed with the evaluation of the evolution of the energy (3.1). By applying

Reynolds transport theorem to the free energy Ψ̂, we have

d

dt

∫
R(t)

Ψ̂ dv =

∫
R(t)

∂tΨ̂ dv +

∫
∂R(t)

Ψ̂v · ν da. (3.11)

In the next step, we apply the divergence theorem and expand the derivatives:

d

dt

∫
R(t)

Ψ̂ dv =

∫
R(t)

∂Ψ̂

∂φ
φ̇+

∂Ψ̂

∂∇φ · (∇φ)̇ + ∂Ψ̂

∂D
: Ḋ+ Ψ̂ divv dv, (3.12)

where we recall that the dot ˙ is the material derivative with respect to the mixture

velocity v. By substituting the identity

(∇φ)̇ = ∇(φ̇) − (∇φ)T∇v, (3.13)

into (3.12) and subsequently integrating by parts, we arrive at

d

dt

∫
R(t)

Ψ̂ dv =

∫
R(t)

μ̂φ̇−
(
∇φ⊗ ∂Ψ̂

∂∇φ

)
: ∇v +

∂Ψ̂

∂D
: Ḋ+ Ψ̂ divv dv

+

∫
∂R(t)

φ̇
∂Ψ̂

∂∇φ · ν da. (3.14)

We substitute the phase evolution equation (2.35a) for the material derivative φ̇

and apply integration by parts to obtain

d

dt

∫
R(t)

Ψ̂ dv =

∫
R(t)

∇μ̂ · ĥv −
(
∇φ⊗ ∂Ψ̂

∂∇φ

)
: ∇v +

∂Ψ̂

∂D
: Ḋ

+(Ψ̂− μ̂φ) divv + μ̂ζγ̂ dv

+

∫
∂R(t)

(
−μ̂ĥv + φ̇

∂Ψ̂

∂∇φ

)
· ν da. (3.15)

Next, we turn our focus on the kinetic energy. In a similar fashion we apply Reynolds

transport theorem and find:

d

dt

∫
R(t)

K (R(t)) dv =

∫
R(t)

v · ∂t(ρv)− 1

2
‖v‖2∂tρ dv

+

∫
∂R(t)

K (R(t))v · ν da. (3.16)
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Substitution of the mass and momentum equations provides:

d

dt

∫
R(t)

K (R(t)) dv =

∫
R(t)

−v · div (ρv ⊗ v) +
1

2
‖v‖2div (ρv) + v · div T̂

+ ρv · g dv +

∫
∂R(t)

K (R(t))v · ν da. (3.17)

With the aid of the identity

−v · div(ρv ⊗ v) +
1

2
‖v‖22div(ρv) = −div

(
1

2
ρ‖v‖2u

)
, (3.18)

and using integration by parts on the stress tensor, the evolution of the kinetic

energy simplifies to:

d

dt

∫
R(t)

K (R(t)) dv =

∫
R(t)

−∇v : T̂+ ρv · g dv +

∫
∂R(t)

v · T̂ν da. (3.19)

Finally, for the gravitational energy evolution we also apply Reynolds transport

theorem to find:

d

dt

∫
R(t)

G (R(t)) dv =

∫
R(t)

gy∂tρ dv +

∫
∂R(t)

G (R(t))v · ν da. (3.20)

Substituting the mass evolution equation (2.28) and subsequently providing inte-

gration by part leads to

d

dt

∫
R(t)

G (R(t)) dv = −
∫
R(t)

ρv · g dv. (3.21)

Taking the sum of (3.15), (3.19) and (3.21) we arrive at

d

dt
E (φ,v) =

∫
∂R(t)

(
vT T̂− μ̂ĥv + φ̇

∂Ψ̂

∂∇φ

)
· ν da

−
∫
R(t)

(
T̂+∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

)
: ∇v −∇μ̂ · ĥv

− ∂Ψ̂

∂D
: Ḋ− μ̂ζγ̂ dv. (3.22)

Next, we observe that the components ∇v, ĥv and γ̂ are not independent. Namely,

we have the sequence of identities:

−divv = −α(φ̇+ φ divv) = α divĥv − βγ̂. (3.23)

The first identity is a direct consequence of the mass balance of the mixture (2.28)

and the second follows from the phase equation (2.35a). We now introduce the

following partition:

T̂ = T̂0 − p̂I with T̂0 := T̂+ p̂I, (3.24)
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in which p̂ is a scalar field that represents the mechanical pressure and −p̂I corre-

sponds to the hydro-static part of the stress tensor T̂. To exploit the degeneracy,

we let the scalar field p̂ act as a Lagrange multiplier on (3.23) by multiplying this

equation by p̂:

−p̂ divv = p̂α divĥv − p̂βγ̂

= −∇(p̂α) · ĥv + div(p̂αĥv)− p̂βγ̂. (3.25)

If we substitute the partition (3.24) and the identity (3.25) into (3.22) we can

identify the rate of work performed by macro- and micro stresses and the dissipation

as

W (R(t)) =

∫
∂R(t)

(
vT (T̂0 − p̂I)− (μ̂+ αp̂)ĥv + φ̇

∂Ψ̂

∂∇φ

)
· ν da, (3.26a)

D(R(t)) =

∫
R(t)

(
T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

)
: ∇v

−∇(μ̂+ p̂α) · ĥv − ∂Ψ̂

∂D
: Ḋ− (μ̂+ αp̂)ζγ̂ dv. (3.26b)

Positivity (≥) of the diffusion D(R(t)) implies, since the control volume R(t) is

arbitrary, positivity of the integrand. To ensure this, we impose positivity of the

members in the integrand independently. The constitutive class of the free energy

Ψ, Eq. (3.7), restricts dependence of Ψ on D. For a more elaborate discussion on

the possible dependence of Ψ on D we refer to Ref. 20. This implies that positivity

of the last member of the integrand of D(R(t)) can only be achieved by requiring

it to vanish via ∂Ψ/∂D = 0. This means the constitutive class of Ψ reduces to

Ψ = Ψ̂(φ,∇φ), (3.27)

and as a consequence the second to last member in the integrand in (3.26b) vanishes.

The energy-dissipation law is thus satisfied when the local inequality is fulfilled:(
T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ − Ψ̂)I

)
: ∇v

−∇(μ̂+ αp̂) · ĥv − (μ̂+ αp̂)ζγ̂ ≥ 0. (3.28)

Based on the inequality (3.28), we now restrict ourselves to stress tensors T, diffu-

sive fluxes hv and mass fluxes γ belonging to the constitutive classes:

T = T̂(φ,∇φ, μ̂,∇μ̂,D, p̂), (3.29a)

hv = ĥv(φ,∇φ, μ̂,∇μ̂,∇p̂), (3.29b)

γ = γ̂(φ, μ̂, p̂). (3.29c)
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3.3. Equivalence of alternative modeling restrictions

As mentioned in Remark 3.5, some of the modeling choices in Sec. 3.1 seem arbi-

trary. As a consequence, the modeling restriction obtained in Sec. 3.2 may seem

discretionary. In Appendix A, we provide the derivations of the most obvious alter-

native modeling restrictions. An overview of the variations is as follows:

(1) Sections 3.1 and 3.2: a volume-measure-based free energy Ψ and the difference

of volume fractions φ as order parameter,

(2) A.1: a mass-measure-based free energy ψ and the difference of volume fractions

φ as order parameter,

(3) A.2: a volume-measure-based free energy Ψ and the difference of concentrations

c as order parameter,

(4) A.3: a mass-measure-based free energy ψ and the difference of concentrations

c as order parameter.

The associated constitutive classes of these modeling choices are

(1) : Ψ = Ψ̂(φ,∇φ), T = T̂(φ,∇φ, μ̂,∇μ̂,D, p̂),
hv = ĥv(φ,∇φ, μ̂,∇μ̂,∇p̂), γ = γ̂(φ, μ̂, p̂), (3.30a)

(2) : ψ = ˆ̂ψ(φ,∇φ), T = ˆ̂T(φ,∇φ, μ̂,∇μ̂,D, ˆ̂p),

hv = ˆ̂hv(φ,∇φ, ˆ̂μ,∇ ˆ̂μ,∇ ˆ̂p), γ = ˆ̂γ(φ, ˆ̂μ, ˆ̂p), (3.30b)

(3) : Ψ = Ψ̌(c,∇c), T = Ť(c,∇c, μ̌,∇μ̌,D, p̌),
Jv = J̌v(c,∇c, μ̌,∇μ̌,∇p̌), γ = γ̌(c, μ̌, p̌), (3.30c)

(4) : ψ = ˇ̌ψ(c,∇c), T = ˇ̌T(c,∇c, ˇ̌μ,∇ ˇ̌μ,D, ˇ̌p),

Jv = ˇ̌Jv(c,∇c, ˇ̌μ,∇ ˇ̌μ,∇ ˇ̌p), γ = ˇ̌γ(c, ˇ̌μ, ˇ̌p), (3.30d)

where p̂, ˆ̂p, p̌ and ˇ̌p are the pressures associated with the modeling choices and the

chemical potential-like variables are, respectively, given by

(1) : μ̂ =
∂Ψ̂

∂φ
− div

∂Ψ̂

∂∇φ, (3.31a)

(2) : ˆ̂μ =
∂ ˆ̂ψ

∂φ
− 1

ρ
div

(
ρ
∂ ˆ̂ψ

∂∇φ

)
, (3.31b)

(3) : μ̌ =
∂Ψ̌

∂c
− div

∂Ψ̌

∂∇c , (3.31c)

(4) : ˇ̌μ =
∂ ˇ̌ψ

∂c
− 1

ρ
div

(
ρ
∂ ˇ̌ψ

∂∇c

)
. (3.31d)
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Collecting the final restrictions provides:

(1) :

(
T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

)
: ∇v

−∇(μ̂+ αp̂) · ĥv − ζ(μ̂+ αp̂)γ̂ ≥ 0, (3.32a)

(2) :

(
ˆ̂T0 +∇φ⊗ ρ

∂ ˆ̂ψ

∂∇φ + ρ ˆ̂μφI

)
: ∇v

−∇(ρ ˆ̂μ+ α ˆ̂p) · ˆ̂hv − ζ(ρ ˆ̂μ+ α ˆ̂p)ˆ̂γ ≥ 0, (3.32b)

(3) :

(
Ť0 +∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I

)
: ∇v

−∇
(
μ̌

ρ
+ βp̌

)
· J̌v −

(
μ̌

ρ
+ βp̌

)
γ̌ ≥ 0, (3.32c)

(4) :

(
ˇ̌T0 +∇c⊗ ρ

∂ ˇ̌ψ

∂∇c

)
: ∇v

−∇ (ˇ̌μ+ ˇ̌pβ) · ˇ̌Jv − (ˇ̌μ+ ˇ̌pβ) ˇ̌γ ≥ 0. (3.32d)

In order to allow comparison of these modeling restrictions, the relation between

these modeling classes needs to be specified. We select the following relations:

free energy classes :

Ψ̂(φ,∇φ) ≡ ρ̂(φ) ˆ̂ψ(φ,∇φ) ≡ ρ̌(c) ˇ̌ψ(c,∇c) ≡ Ψ̌(c,∇c), (3.33)

stress tensor classes :

T̂(φ,∇φ, μ̂,∇μ̂, p̂) ≡ ˆ̂T(φ,∇φ, ˆ̂μ,∇ ˆ̂μ, ˆ̂p)

≡ ˇ̌T(c,∇c, ˇ̌μ,∇ ˇ̌μ, ˇ̌p)

≡ Ť(c,∇c, μ̌,∇μ̌, p̌), (3.34)

diffusive flux classes :

ĥv(φ,∇φ, μ̂,∇μ̂,∇p̂) ≡ ĥv(φ,∇φ, μ̂,∇μ̂,∇ ˆ̂p)

≡ ζJ̌v(c,∇c, μ̌,∇μ̌,∇p̌)
≡ ζ ˇ̌Jv(c,∇c, ˇ̌μ,∇ ˇ̌μ,∇ ˇ̌p), (3.35)

mass flux classes :

γ̂(φ, μ̂, p̂) ≡ ˆ̂γ(φ, ˆ̂μ, ˆ̂p) ≡ γ̌(c, μ̌, p̌) ≡ ˇ̌γ(c, ˇ̌μ, ˇ̌p). (3.36)

The particular identification choice of the diffusive fluxes originates from the

relation between the diffusive fluxes before constitutive modeling (Lemma 2.1).
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Note that a direct consequence of the free energy classes (3.33) is the equivalence

of the associated Korteweg tensors:

∇φ⊗ ∂Ψ̂

∂∇φ = ∇φ ⊗ ρ
∂ ˆ̂ψ

∂∇φ = ∇c⊗ ρ
∂ ˇ̌ψ

∂∇c = ∇c⊗ ∂Ψ̌

∂∇c , (3.37)

where we recall the chain rule and the observations φ = φ(c) and c = c(φ).

Lemma 3.1. (Relations between chemical potential-like quantities) The chemical

potential-like quantities are related via the following identities :

μ̂ = ρ ˆ̂μ+ ˆ̂ψ[[ρ]], (3.38a)

μ̌ = ρ ˇ̌μ− βρ2 ˇ̌ψ, (3.38b)

μ̌ =
ρ2

ρ1ρ2
μ̂. (3.38c)

Proof. See Appendix B.

We are now ready to state one of the main results of this paper: the choice of

the order parameter and the type of the free energy do not influence the modeling

restrictions. The selection of a particular order parameter should not be regarded

as a modeling step but simply as part of the variable selection as one can easily

alter via a variable transformation.

Theorem 3.1. (Equivalence modeling restrictions) Selecting the following rela-

tions between the pressures of the various modeling choices :

p̂ = ˆ̂p+ ˆ̂ψ {ρ} , (3.39a)

p̌ = ˇ̌p+ ρ ˇ̌ψ, (3.39b)

p̌ = p̂+ μ̂φ, (3.39c)

yields equivalence of the restrictions in (3.32).

Proof. The proof relies on the identifications (3.33)–(3.36), the relation (3.37) and

Lemma 3.1. Details are provided in Appendix B.

3.4. Selection of constitutive models

Now that we have established equivalence of the modeling restrictions, we proceed

with the one derived in this section:(
T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ − Ψ̂)I

)
: ∇v

−∇(μ̂+ αp̂) · ĥv − ζ(μ̂ + αp̂)γ̂ ≥ 0. (3.40)
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To avoid that variations of ∇v lead to a violation of the modeling restriction, we

make the constitutive choice:

T̂0 = −∇φ⊗ ∂Ψ̂

∂∇φ − (μ̂φ− Ψ̂)I+ ν(φ)(2D + λ(divv)I), (3.41)

which is in agreement with (2.40) and precludes violation of the energy-dissipation

law by the stress contribution. Here, ν(φ) ≥ 0 is the dynamic phase-dependent vis-

cosity and λ ≥ −2/d is a scalar, where we recall that d is the number of dimensions.

This form of the viscous stress tensor assumes an isotropic Newtonian mixture. A

direct consequence is the expression of the stress tensor T:

T̂ = −∇φ⊗ ∂Ψ̂

∂∇φ − (μφ− Ψ̂)I+ ν(φ)(2D + λ(divv)I) − p̂I. (3.42)

Next, we focus on the diffusive flux ĥv. Insisting positivity of the second member

in (3.40) implies the following form:

ĥv = −M̂v∇(μ̂+ αp̂), (3.43)

for some constitutive quantity M̂v = M̂v(φ,∇φ, μ̂,∇μ̂,∇p̂), referred to as mobility

tensor, that is consistent with the inequality

−∇(μ̂+ αp̂) · (M̂v∇(μ̂+ αp̂)) ≤ 0 (3.44)

for all (φ,∇φ, μ̂,∇μ̂,∇p̂). This may be understood as the generalized Fick laws of

diffusion.

Lastly, we insist positivity of the third term in (3.40). Noting that ζ > 0, this

implies the following form:

γ̂ = −m̂(φ, μ̂, p̂)(μ̂+ αp̂), (3.45)

where the mobility m = m̂(φ, μ̂, p̂) only attains positive values (m ≥ 0). Ensuring

vanishing fluxes in the single fluid region requires m̂(φ = ±1, μ̂, p̂) = 0.

Remark 3.10. (Constitutive models) The particular constitutive models of the

diffusive flux (3.43) and mass flux (3.45) are the only constitutive models in the

specified classes (3.29b) and (3.29c), that guarantee positivity of the second and

third term in (3.40), respectively. This claim results from a theorem on the solution

of thermodynamical inequalities proved by Gurtin.19 One could also employ this

theorem to construct the most general form of the stress tensor. In this paper, we

only present a simple constitutive choice of the stress tensor in agreement with

unification principle three. �
Remark 3.11. (Mobility tensor) The first appearance of the mobility tensor is in

Ref. 19. In phase-field literature it is common to work with an isotropic mobility

tensor. �
Remark 3.12. (Incompatible mobility in single fluid region) We show that a

degenerate mobility is required in general. Consider in the general non-matching
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density case (α 	= 0) a region Da ∈ Ω in which φ ≡ a with −1 ≤ a ≤ 1 constant.

Note that in Da we have Ψ̂ = Ψ̂(φ,∇φ) = Ψ̂(φ) = Ψ̂(a) = constant, and thus

μ̂ = 0 in Da. As a consequence we deduce M̂v = M̂v(a,0, 0,0,∇p̂) in Da. The mass

conservation equation (2.28) takes the following form:

divv = 0, in Da, (3.46)

whereas the phase equation (2.35a) reduces to

adivv − αdiv(M̂v∇p̂) = −βm̂p̂, in Da. (3.47)

Therefore

div(M̂v∇p̂) = ζm̂p̂, in Da, (3.48)

representing a balance equation for the pressure. Next, consider the cases a = ±1.

In this situation the mass flux contribution vanishes:m = 0 and thus (3.48) reduces

to

div(M̂v∇p̂) = 0, in D±1. (3.49)

In general (3.49) represents a balance equation, purely formulated in terms of the

pressure, that holds in the single fluid. There exists no such nontrivial equation that

matches with the standard incompressible Navier–Stokes equations in the single

fluid regime. In particular, when M̂v is a non-zero constant tensor it follows that

Δp̂ = 0, in D±1, (3.50)

which in general does not hold in the single fluid regime (remark that (3.50) holds

for Stokes flow with a divergence free-force). Thus in general we are left with the

trivial instance of (3.49):

M̂v = 0, in D±1, (3.51)

i.e. the mobility tensor is of degenerate type. Note that for many models proposed

in literature a non-degenerate mobility was chosen, see Table 2. �
Remark 3.13. (Degenerate mobility) The relevance of a degenerate mobility ten-

sor is not new and is in fact well known in community, see e.g. Refs. 1, 2 and 8.

We note that the model presented in Ref. 3 has been studied for a variety of mobil-

ity choices. Its sharp interface limit has been rigorously shown to exist for both

degenerate and non-degenerate mobilities, and the associated sharp interface free

boundary problem depends the choice of the mobility.

Remark 3.14. (Alternative reasoning degenerate mobility) Instead of following

the above arguments leading to a degenerate mobility, one could reason as follows.

Note that a substitution of the volume fractions (2.31) into the volume-averaged

velocity (2.43) and subsequently into the equation for diffusive flux (2.66) provides

the alternative form of the diffusive flux hu:

hu = −ξ(φ)[[v]], (3.52)
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with

ξ(φ) := φ2 − 1 ≤ 0. (3.53)

Obviously hu vanishes whenever φ = ±1. Recalling Lemma 2.1, we have

hv =
{ρ}
ρ

hu = −{ρ}
ρ
ξ(φ)[[v]], (3.54)

and thus the diffusive flux hv also vanishes in the single-fluid case φ = ±1. Demand-

ing the constitutive model of the diffusive flux hv = ĥv to be compatible with this

restriction we get:

M̂v∇p̂ = 0, for φ = ±1, (3.55)

where M̂v only depends on ∇p̂). As before, the only solution that matches with

the standard incompressible Navier–Stokes equations in the single fluid regime is

the trivial one:

M̂v = 0, for φ = ±1. (3.56)

Note that (3.54) suggests the specific form M̂v = −ξ(φ)M̄ for some M̄.

Of course, this argument can also be made when working with the concentration

c as order parameter. On the account of Lemma 2.1 and the identity

ξ(φ) =
ρ2

ρ1ρ2
ξ(c), (3.57)

we have

Ju = −ρ
2 {ρ}
ρ1ρ2

ξ(c)[[v]]. (3.58)

Again employing Lemma 2.1 reveals that the diffusive flux Jv takes the following

form:

Jv =
ρ1ρ2
{ρ} ρJ

u = −ρξ(c)[[v]]. (3.59)

This quantity vanishes in the single-fluid regime c = ±1, and using the constitutive

class Jv = J̌v we can deduce that the associated mobility tensor vanishes when

c = ±1. �
Remark 3.15. (Alternative diffusive fluxes) The equivalence of the diffusive fluxes,

(3.35), provides the form of the diffusive flux J̌v:

J̌v = −M̌v∇(μ̂+ αp̂), (3.60)

with M̌v = ζ−1M̂v. Additionally, by identifying the diffusive flux ĥu = (ρ/ {ρ})ĥv

we find:

ĥu = −M̂u∇(μ̂+ αp̂), (3.61)

with M̂u = (ρ/ {ρ})M̂v. �
This completes the constitutive modeling. Via substituting (3.42), (3.43) and

(3.45) into (2.72) we have obtained one model that can be formulated in various
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ways using:

• the mixture velocity v or the volume-averaged velocity u,

• the volume fraction difference φ or the concentration difference c,

• the mass-measure-based free energy ψ̂ or the volume-measure-based free energy

Ψ̂.

We withhold from presenting many formulations and only make variations in the

mean velocity to obtain one formulation in terms of the mixture velocity:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇p̂+ div

(
∇φ⊗ ∂Ψ̂

∂∇φ + (μφ− Ψ̂)I

)

− div(ν(2D+ λ(divv)I)) − ρg = 0, (3.62a)

∂tρ+ div(ρv) = 0, (3.62b)

∂tφ+ div(φv) − div(M̂v∇(μ̂+ αp̂)) + ζm̂(μ̂ + αp̂) = 0, (3.62c)

μ̂− ∂Ψ̂

∂φ
+ div

(
∂Ψ̂

∂∇φ

)
= 0, (3.62d)

and one formulation in terms of the volume-averaged velocity:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρu+ J̃u) + div

(
ρu⊗ u+ J̃u ⊗ u+ u⊗ J̃u +

1

ρ
J̃u ⊗ J̃u

)

+∇p̂+ div

(
∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

)

− div(ν(2∇s(u+ ρ−1J̃u) + λ(div(u+ ρ−1J̃u))I)) − ρg = 0, (3.63a)

divu+ βm̂(μ̂+ αp̂) = 0, (3.63b)

∂tφ+ u · ∇φ− div(M̂u∇(μ̂+ αp̂)) +
ρ

2ρ1ρ2
m̂(μ̂+ αp̂) = 0, (3.63c)

μ̂− ∂Ψ̂

∂φ
+ div

(
∂Ψ̂

∂∇φ

)
= 0, (3.63d)

with J̃u = −[[ρ]]M̂u∇(μ̂+αp̂). Both models obviously satisfy the exact same form of

the energy-dissipation statement (3.10), which complies with the second unification

principle. We remark that the variable transformation that links the models (3.62)

and (3.63) via (2.48) now involves a constitutive model for the diffusive flux J̃u.

4. Unification of Existing Navier–Stokes Cahn–Hilliard Models

As discussed in the introductory section, there exists a wide spectrum with many

flavors of NSCH models. It is the purpose of this section to unify them.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

17
5-

22
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

0:
e6

7:
2b

b:
0:

f3
16

:a
05

f:
44

b3
:3

40
5 

on
 1

2/
03

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 1, 2023 14:43 WSPC/103-M3AS 2350006

206 M. F. P. ten Eikelder et al.

Lowengrub and Truskinovsky25

To indicate the relation between our model and that of Ref. 25 we set γ = 0 and

formulate our model in terms of (v, c, ˇ̌ψ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇ ˇ̌p+ div

(
∇c⊗ ρ

∂ ˇ̌ψ

∂∇c

)

− div(ν(c)(2D+ λ(divv)I)) − ρg = 0, (4.1a)

∂tρ+ div(ρv) = 0, (4.1b)

ρċ− div(M̂v(φ(c))∇(ˇ̌μ + β ˇ̌p)) = 0, (4.1c)

ˇ̌μ− ∂ ˇ̌ψ

∂c
+

1

ρ
div

(
ρ
∂ ˇ̌ψ

∂∇c

)
= 0. (4.1d)

To establish (4.1c) we have employed the relation between the diffusive classes

(3.35):

ĥv(φ,∇φ, μ̂,∇μ̂,∇p̂) = ζ ˇ̌Jv(c,∇c, ˇ̌μ,∇ ˇ̌μ,∇ ˇ̌p) (4.2)

and the identity

ˇ̌μ+ β ˇ̌p = ζ(μ̂+ αp̂). (4.3)

First, we note that the mass balance of the mixture may be written as

divv +
1

ρ
ρ̌′(c)ċ = 0. (4.4)

Next, one recognizes the derivative ∂ρ/∂c in the evolution of the order parameter

(4.1c) via:

ρċ− div

(
M̂v(φ(c))∇

(
ˇ̌μ− ˇ̌p

ρ2
ρ̌′(c)

))
= 0. (4.5)

Substitution of (4.1d) into (4.5) provides the alternative form:

ρċ− div

(
M̂v(φ(c))∇

(
∂ ˇ̌ψ

∂c
− 1

ρ
div

(
ρ
∂ ˇ̌ψ

∂∇c

)
− ˇ̌p

ρ2
ρ̌′(c)

))
= 0. (4.6)

To obtain the model of Lowengrub and Truskinovsky25 one has to set ˇ̌ψ = σϕ(c)/ε+

σε|∇c|2/2 for some ϕ = ϕ(c), and replace the quantity M̂v(φ(c)) in (4.6) by a

non-zero constant isotropic mobility m̃I:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇p+ σεdiv(∇c⊗ ρ∇c)
− div(ν(2D+ λ(divv)I)) = 0, (4.7a)

divv +
1

ρ
ρ̌′(c)ċ = 0, (4.7b)

ρċ− div

(
m̃∇

(
σ

ε

∂ϕ

∂c
− σε

ρ
div (ρ∇c)− p

ρ2
ρ̌′(c)

))
= 0. (4.7c)
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In other words, this comparison reveals that the quasi-incompressible model of

Ref. 25 is identical to our model (up to the mobility type, see Remark 3.12).

Shokrpour Roudbari et al.,38 Aki et al.4 and Shen et al.37

We now explore the relation of our model with the models Refs. 4, 37 and 38. For

the sake of clarity we restrict to γ = 0 and note that only model Ref. 4 contains

mass fluxes. An alternative formulation of model (3.62) follows when instead of

identity (3.25) one employs

−p∗divv =
p∗[[ρ]]
ρ

φ̇

=
p∗[[ρ]]
ρ

(−divĥv − φdivv)

= ∇
(
p∗[[ρ]]
ρ

)
· ĥv − p∗[[ρ]]

ρ
φdivv − div

(
p∗[[ρ]]
ρ

ĥv

)
, (4.8)

in which p∗ is the pressure quantity. The associated stress tensor and diffusive flux

take the form ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T̂ = −∇φ⊗ ∂Ψ̂

∂∇φ −
(
μ̂φ− Ψ̂− p∗[[ρ]]

ρ
φ

)
I

+ ν(φ)(2D+ λ(divv)I) − pI, (4.9a)

ĥv = −M̂v(φ)∇
(
μ̂− p∗[[ρ]]

ρ
φ

)
. (4.9b)

Noting that the mass equation may be written as

divv − αdiv

(
M̂v(φ)∇

(
μ̂− p∗[[ρ]]

ρ

))
= 0, (4.10)

we obtain the equivalent model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρv) + div(ρv ⊗ v) +∇p∗

+div

(
∇φ⊗ ∂Ψ̂

∂∇φ +

(
μ̂φ− Ψ̂− p∗[[ρ]]

ρ
φ

)
I

)

− div (ν(φ)(2D + λ(divv)I)) − ρg = 0, (4.11a)

divv − αdiv

(
M̂v(φ)∇

(
μ̂− p∗[[ρ]]

ρ

))
= 0, (4.11b)

φ̇+ φdivv − div

(
M̂v(φ)∇

(
μ̂− p∗[[ρ]]

ρ

))
= 0, (4.11c)

μ̂− ∂Ψ̂

∂φ
+ div

(
∂Ψ̂

∂∇φ

)
= 0. (4.11d)
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The third and fourth terms in the momentum equation (4.11a) may be written as

∇p∗ + div

(
∇φ⊗ ∂Ψ̂

∂∇φ +

(
μ̂φ− Ψ̂− p∗[[ρ]]

ρ
φ

)
I

)

= ∇
(
p∗

{ρ}
ρ

)
+ div

(
∇φ⊗ ∂Ψ̂

∂∇φ +
(
μ̂φ− Ψ̂

)
I

)
. (4.12)

The last member of the phase equation (4.11c) may be written as

−div

(
M̂v(φ)∇

(
μ̂− p∗[[ρ]]

ρ

))
= −div

(
M̂v(φ)∇

(
μ̂+ αp∗

{ρ}
ρ

))
. (4.13)

Equivalence of model (4.11) with model (3.62) follows from (4.12) and (4.13) via

the variable transformation:

p̂ = p∗
{ρ}
ρ

=
p∗

1− αφ
. (4.14)

Up to the definition of the mobility, this model (and thus also model (3.62)) is

equivalent to the model proposed by Ref. 38. A variable transformation presented in

Ref. 38 reveals that the models Refs. 4 and 37 are equivalent, up to the definition of

the mobility, to the model Ref. 38. This reveals that all these models are equivalent

to our model (up to the mobility type, see Remark 3.12).

Table 2. Comparison of the various NSCH models. The column ‘MT-consistent balance laws’
indicates whether the balance laws of the model are compatible with mixture theory. In the third
column ‘Compatible in single fluid’ we state whether the model has a degenerate or non-degen-
erate mobility, see Remark 3.12, and in the last column whether the model is energy dissipative.
The symbol ★ indicates that there is an energy-dissipation law but that the associated kinetic
energy is not an obvious approximation of the kinetic energy of the mixture, see also Remark 3.4.

Model M
T
-c
on
si
st
en
t
ba
la
nc
e
la
w
s

C
om

pa
tib
le
in
si
ng
le
flu
id

E
ne
rg
y-
di
ss
ip
at
io
n
la
w

Abels et al.3 ✗ ✓ ★

Aki et al.4 ✓ ✗ ✓

Boyer9 ✗ ✓ ✗

Ding et al.12 ✗ ✓ ✗

Lowengrub and Truskinovsky25 ✓ ✗ ✓

Shen et al.37 ✓ ✗ ✓

Shokrpour Roudbari et al.38 ✓ ✗ ✓

Current ✓ ✓ ✓

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

17
5-

22
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

0:
e6

7:
2b

b:
0:

f3
16

:a
05

f:
44

b3
:3

40
5 

on
 1

2/
03

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 1, 2023 14:43 WSPC/103-M3AS 2350006

Unified framework Navier–Stokes Cahn–Hilliard models 209

Boyer,9 Ding et al.12 and Abels et al.3

The models Refs. 9, 12 and 3 are formulated in terms of the volume-averaged mean

velocity. The linear momentum equation deviates from that in our model (3.63), and

as such these models are incompatible with our model. In contrast to the models

Refs. 9 and 12, model Ref. 3 is presented with an energy-dissipation law. The kinetic

energy in this law is however not an obvious approximation of the kinetic energy

of the mixture, see Remark 3.4. Finally, we note that these models are consistent

with the incompressible Navier–Stokes equations in the single-fluid regime.

We close this section with an overview of the various models presented in Table 2.

5. Summary and Outlook

In this paper, we established a unified framework of all existing NSCH models. To

this purpose, we used the general continuum mixture theory and laid down three

unifying principles:

(1) there is only one system of continuum mechanics balance laws that describes

the physical model,

(2) there is only one natural energy-dissipation law that leads to quasi-

incompressible NSCH models,

(3) variations between the models can only appear in the constitutive choices.

In Sec. 2, we provided a precise statement of the principles of mixture theory and

their consequences. Furthermore, we showed that the mixture framework leads to

one system of balance laws that can be formulated using different variable sets, e.g.

in terms of a mass-averaged or volume-averaged velocity. Formulating the balance

laws using the volume-averaged velocity, we found a system distinct from exist-

ing volume-averaged velocity based models. We illustrated the incompatibility with

mixture theory of volume-averaged velocity based models that appear in the litera-

ture. This can however easily be repaired. Next, in Sec. 3, we demonstrated how an

energy-dissipation law naturally leads to quasi-incompressible NSCH models. We

proved that the energy-dissipative modeling restriction for the constitutive classes

is independent of the variable set. Additionally, we showed that in our framework

the mobility tensor of the diffuse flux is of degenerate type. In Sec. 4, we demon-

strated that, using the appropriate degenerate mobility, existing NSCH models are

often equivalent reformulations of the same physical model. Finally, we presented

an overview of the various NSCH models in Table 2.

While we think that the presented framework and the associated analysis are

useful to gain insight into NSCH models, we do not claim that they are sufficient

in this aspect. We outline some of our thoughts on potential further directions

for future research. First, it is essential to establish the sharp interface asymp-

totics and associated free energy inequalities. We conjecture that the approaches

and techniques presented in Refs. 3 and 4 can directly be applied to the model

proposed herein as well. A second important direction for future research lies in
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the rigorous mathematical analysis of the proposed models. Furthermore, we note

that, even though the continuous formulations are equivalent, associated discretiza-

tion methods are, at least ab initio, not identical. As such, it would be valuable to

design numerical schemes that inherit useful properties of the model via convenient

formulations. Lastly, it would be worthwhile to explore alternative two-phase flow

models that utilize the evolution equation of the diffusive flux.

Appendix A. Alternative Constitutive Modeling

In this appendix, we provide the derivation of the most common alternative con-

stitutive modeling approaches:

• A.1: volume fraction φ and mass-measure-based free energy ψ,

• A.2: concentration c and volume-measure-based free energy Ψ,

• A.3: concentration c and mass-measure-based free energy ψ.

A.1. Constitutive modeling: Volume fraction and

mass-measure-based free energy

Using the same simplification assumption (S ), the total energy E is the superposi-

tion of the Helmholtz free energy, kinetic energy and gravitational energy:

E (φ,v) =

∫
R(t)

(ρψ + K (R(t)) + G (R(t))) dv, (A.1)

where R = R(t) denotes an arbitrary time-dependent control volume in Ω that

is transported by the mixture velocity v. The mass-measure-based free energy is

postulated to pertain to the constitutive class:

ψ = ˆ̂ψ(φ,∇φ,D), (A.2)

and we define the chemical potential-like quantity as

ˆ̂μ =
∂ ˆ̂ψ

∂φ
− 1

ρ
div

(
ρ
∂ ˆ̂ψ

∂∇φ

)
. (A.3)

Analogously to Sec. 3.2, we work with constitutive classes for stress tensor T = ˆ̂T,

diffusive flux hv = ˆ̂hv and mass flux γ = ˆ̂γ and postpone their specification. Next,

we postulate the energy-dissipation law:

d

dt
E (φ,v) = W (R(t)) − D(R(t)), (A.4)

in which W (R(t)) and D(R(t)) ≥ 0 have the same interpretation as in Sec. 3.2.

With the aid of Reynolds transport theorem and the mixture mass balance law
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(2.28), the evolution of the free energy in (A.1) takes the form:

d

dt

∫
R(t)

ρ ˆ̂ψ dv =

∫
R(t)

ρ
˙̂̂
ψ dv

=

∫
R(t)

ρ

(
∂ ˆ̂ψ

∂φ
φ̇+

∂ ˆ̂ψ

∂∇φ · (∇φ)˙+ ∂ ˆ̂ψ

∂D
: Ḋ

)
dv. (A.5)

Substitution of (3.13) into (A.5) and subsequently the integration by parts provides:

d

dt

∫
R(t)

ρ ˆ̂ψ dv =

∫
R(t)

ρ ˆ̂μφ̇−
(
∇φ⊗ ρ

∂ ˆ̂ψ

∂∇φ

)
: ∇v + ρ

∂ ˆ̂ψ

∂D
: Ḋ dv

+

∫
∂R(t)

φ̇ρ
∂ ˆ̂ψ

∂∇φ · ν da. (A.6)

We now eliminate the material derivative φ̇ via the substitution of the phase evo-

lution equation (2.35a):

d

dt

∫
R(t)

ρ ˆ̂ψ dv =

∫
R(t)

∇(ρ ˆ̂μ) · ˆ̂hv −
(
∇φ ⊗ ∂ρ ˆ̂ψ

∂∇φ

)
: ∇v + ρ

∂ ˆ̂ψ

∂D
: Ḋ

− ρ ˆ̂μφ divv + ˆ̂γζρ ˆ̂μ dv

+

∫
∂R(t)

(
−ρ ˆ̂μˆ̂hv + φ̇ρ

∂ ˆ̂ψ

∂∇φ

)
· ν da. (A.7)

Taking now the sum of (A.7), kinetic energy evolution (3.19) and gravitational

energy evolution (3.21) we arrive at

d

dt
E (φ,v) =

∫
∂R(t)

(
vT ˆ̂T− ρ ˆ̂μˆ̂hv + φ̇ρ

∂ ˆ̂ψ

∂∇φ

)
· ν da

−
∫
R(t)

(
ˆ̂T+∇φ⊗ ρ

∂ ˆ̂ψ

∂∇φ + μφI

)
: ∇v

−∇(ρ ˆ̂μ) · ˆ̂hv − ∂ ˆ̂ψ

∂D
: Ḋ− ζ(ρ ˆ̂μ+ α ˆ̂p)ˆ̂γ dv. (A.8)

Employing the partition:

ˆ̂T = ˆ̂T0 − ˆ̂pI with ˆ̂T0 := ˆ̂T+ ˆ̂pI, (A.9)

in which ˆ̂p is a scalar pressure field and the identity (3.25) with pressure ˆ̂p in (3.22)

allows to identify the rate of work and dissipation as

W (R(t)) =

∫
∂R(t)

(
vT ( ˆ̂T0 − ˆ̂pI)− (ρ ˆ̂μ+ α ˆ̂p)ˆ̂hv + φ̇ρ

∂ ˆ̂ψ

∂∇φ

)
· ν da, (A.10a)
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D(R(t)) =

∫
R(t)

(
ˆ̂T0 +∇φ⊗ ρ

∂ ˆ̂ψ

∂∇φ + ρ ˆ̂μφI

)
: ∇v

−∇(ρ ˆ̂μ+ ˆ̂pα) · ˆ̂hv − ∂ ˆ̂ψ

∂D
: Ḋ− ζ(ρ ˆ̂μ+ α ˆ̂p)ˆ̂γ dv. (A.10b)

By following the same argument as in Sec. 3.2 the positivity of the diffusion leads

to the reduced class:

ψ = ˆ̂ψ(φ,∇φ), (A.11)

and the modeling restriction readily follows:(
ˆ̂T0 +∇φ⊗ ρ

∂ ˆ̂ψ

∂∇φ + ρ ˆ̂μφI

)
: ∇v

−∇(ρ ˆ̂μ+ α ˆ̂p) · ˆ̂hv − ζ(ρ ˆ̂μ+ α ˆ̂p)ˆ̂γ ≥ 0. (A.12)

Based on the form of the modeling restriction (A.12) we select the following con-

stitutive classes:

T = ˆ̂T(φ,∇φ, ˆ̂μ,∇ ˆ̂μ,D, ˆ̂p), (A.13a)

hv = ˆ̂hv(φ,∇φ, ˆ̂μ,∇ ˆ̂μ,∇ ˆ̂p), (A.13b)

γ = ˆ̂γ(φ, ˆ̂μ, ˆ̂p). (A.13c)

A.2. Constitutive modeling: Concentration and

volume-measure-based free energy

With the aid of the simplification assumption (S ), the total energy E reads in terms

of the concentration c:

E (c,v) =

∫
R(t)

(Ψ + K (R(t)) + G (R(t))) dv, (A.14)

where again R = R(t) denotes an arbitrary time-dependent control volume in

Ω that is transported by the mixture velocity v. The volume-measure-based free

energy is postulated to belong to the class:

Ψ = Ψ̌(c,∇c,D), (A.15)

and the concentration-based chemical potential-like quantity is the Fréchet deriva-

tive of the Helmholtz free energy Ψ with respect to c:

μ̌ =
∂Ψ̌

∂c
− div

∂Ψ̌

∂∇c . (A.16)

We work with constitutive classes for stress tensor T = Ť, diffusive flux hv = ȟv

and mass flux γ = γ̌ and postpone their specification. We postulate the energy-

dissipation law:

d

dt
E (c,v) = W (R(t)) − D(R(t)), (A.17)
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in which we use the same interpretation of W (R(t)) and D(R(t)) ≥ 0 as in Sec. 3. To

proceed we follow the same procedure as in Sec. 3 with the concentration evolution

equation (2.35b) and find

d

dt
E (c,v) =

∫
∂R(t)

(
vT Ť− μ̌

J̌v

ρ
+ ċ

∂Ψ̌

∂∇c
)
· ν da

−
∫
R(t)

(
Ť+∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I

)
: ∇v −∇

(
μ̌

ρ

)
· J̌v

− ∂Ψ̌

∂D
: Ḋ− μ̌

ρ
γ̌ dv. (A.18)

Next, we introduce the partition:

Ť = Ť0 − p̌I with Ť0 := Ť+ p̌I, (A.19)

in which p̌ is a scalar pressure field. Via the concentration equation (2.35b) we

deduce the identity

−p̌ divv = p̌

(
1

ρ2
∂ρ

∂c
ρċ

)

= −p̌ 1

ρ2
∂ρ

∂c
(divJ̌v − γ̌)

=
p̌

2

(
1

ρ1
− 1

ρ2

)
(divJ̌v − γ̌)

= βp̌divJ̌v − βp̌γ̌, (A.20)

where we recall the definition:

β =
ρ2 − ρ1
2ρ1ρ2

= − [[ρ]]

ρ1ρ2
. (A.21)

Via substitution of the identity (A.20) we can identify the rate of work and dissi-

pation term:

W (R(t)) =

∫
∂R(t)

(
vT (Ť0 − p̌I)−

(
μ̌

ρ
+ βp̌

)
J̌v + ċ

∂Ψ̌

∂∇c
)
· ν da, (A.22a)

D(R(t)) =

∫
R(t)

(
Ť0 +∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I

)
: ∇v

−∇
(
μ̌

ρ
+ βp̌

)
· J̌v − ∂Ψ̌

∂D
: Ḋ−

(
μ̌

ρ
+ βp̌

)
γ̌ dv. (A.22b)

Using the same argument as before we work with the reduced class of the free

energy:

Ψ = Ψ̌(c,∇c), (A.23)
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and obtain the modeling restriction:(
Ť0 +∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I

)
: ∇v −∇

(
μ̌

ρ
+ βp̌

)
· J̌v −

(
μ̌

ρ
+ βp̌

)
γ̌ ≥ 0. (A.24)

Based on (A.24) we specify the classes for stress tensor, diffusive flux, and mass

flux:

T = Ť(c,∇c, μ,∇μ,D, p̌), (A.25a)

Jv = J̌v(c,∇c, μ,∇μ,∇p̌), (A.25b)

γ = γ̌(c, μ̌, p̌). (A.25c)

A.3. Constitutive modeling: Concentration and

mass-measure-based free energy

The simplification assumption (S ) provides the total energy E in terms of the

concentration c:

E (c,v) =

∫
R(t)

(ρψ + K (R(t)) + G (R(t))) dv, (A.26)

where again R = R(t) denotes an arbitrary time-dependent control volume in Ω

that is transported by the mixture velocity v. The mass-measure-based free energy

is postulated to belong to the class:

ψ = ˇ̌ψ(c,∇c,D), (A.27)

and the concentration-based chemical potential-like quantity is defined as

ˇ̌μ =
∂ ˇ̌ψ

∂c
− 1

ρ
div

(
ρ
∂ ˇ̌ψ

∂∇c

)
. (A.28)

Analogously to the other cases, we work with constitutive classes for stress tensor

T = ˇ̌T, diffusive flux hv = ˇ̌hv and mass flux γ = ˇ̌γ and postpone their specification.

We postulate:

d

dt
E (c,v) = W (R(t)) − D(R(t)), (A.29)

with the same interpretation of W (R(t)) and D(R(t)) ≥ 0. We proceed with the

evaluation of the evolution of the energy (A.26) and find via Reynolds transport

theorem and the mass balance equation (2.28):

d

dt

∫
R(t)

ρ ˇ̌ψ dv =

∫
R(t)

ρ
˙̌̌
ψ dv

=

∫
R(t)

ρ

(
∂ ˇ̌ψ

∂c
ċ+

∂ ˇ̌ψ

∂∇c · (∇c)˙+
∂ ˇ̌ψ

∂D
: Ḋ

)
dv. (A.30)

On the account of the relation

(∇c)̇ = ∇(ċ)− (∇c)T∇v, (A.31)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

17
5-

22
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

0:
e6

7:
2b

b:
0:

f3
16

:a
05

f:
44

b3
:3

40
5 

on
 1

2/
03

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 1, 2023 14:43 WSPC/103-M3AS 2350006

Unified framework Navier–Stokes Cahn–Hilliard models 215

we arrive at

d

dt

∫
R(t)

ρ ˇ̌ψ dv =

∫
R(t)

ρ ˇ̌μċ−
(
∇c⊗ ∂ρ ˇ̌ψ

∂∇c

)
: ∇v + ρ

∂ ˇ̌ψ

∂D
: Ḋ dv

+

∫
∂R(t)

ċρ
∂ ˇ̌ψ

∂∇c · ν da. (A.32)

By substituting the concentration equation (2.35b), we find

d

dt

∫
R(t)

ρ ˇ̌ψ dv =

∫
R(t)

∇ ˇ̌μ · ˇ̌Jv −
(
∇c⊗ ∂ρ ˇ̌ψ

∂∇c

)
: ∇v + ρ

∂ ˇ̌ψ

∂D
: Ḋ+ ˇ̌μˇ̌γ dv

+

∫
∂R(t)

(
− ˇ̌μˇ̌Jv + ċρ

∂ ˇ̌ψ

∂∇c

)
· ν da. (A.33)

Following the same procedure as in Sec. 3, we find

d

dt
E (c,v) =

∫
∂R(t)

(
vT ˇ̌T− ˇ̌μˇ̌Jv + ċ

∂ρ ˇ̌ψ

∂∇c

)
· ν da

−
∫
R(t)

(
ˇ̌T+∇c⊗ ∂ρ ˇ̌ψ

∂∇c

)
: ∇v −∇ ˇ̌μ · ˇ̌Jv

− ∂ρ ˇ̌ψ

∂D
: Ḋ− ˇ̌μˇ̌γ dv. (A.34)

Via substitution of the partition

ˇ̌T = ˇ̌T0 − ˇ̌pI with ˇ̌T0 := ˇ̌T+ ˇ̌pI, (A.35)

and the identity (A.20) with pressure ˇ̌p we identify the rate of work and dissipation

term:

W (R(t)) =

∫
∂R(t)

(
vT ( ˇ̌T0 − ˇ̌pI)− (ˇ̌μ+ ˇ̌pβ)ˇ̌Jv + ċ

∂ρ ˇ̌ψ

∂∇c

)
· ν da, (A.36a)

D(R(t)) =

∫
R(t)

(
ˇ̌T0 +∇c⊗ ∂ρ ˇ̌ψ

∂∇c

)
: ∇v

−∇(ˇ̌μ+ ˇ̌pβ) · ˇ̌Jv − ∂ρ ˇ̌ψ

∂D
: Ḋ− (ˇ̌μ+ ˇ̌pβ)ˇ̌γ dv, (A.36b)

where we recall β = −[[ρ]]/(ρ1ρ2). Using the same argument as before, we work with

the reduced class of the free energy:

ψ = ˇ̌ψ(c,∇c), (A.37)

and obtain the modeling restriction(
ˇ̌T0 +∇c⊗ ρ

∂ ˇ̌ψ

∂∇c

)
: ∇v −∇(ˇ̌μ+ ˇ̌pβ) · ˇ̌Jv − (ˇ̌μ+ ˇ̌pβ)ˇ̌γ ≥ 0. (A.38)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

17
5-

22
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 2
a0

0:
e6

7:
2b

b:
0:

f3
16

:a
05

f:
44

b3
:3

40
5 

on
 1

2/
03

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 1, 2023 14:43 WSPC/103-M3AS 2350006

216 M. F. P. ten Eikelder et al.

Based on the modeling restriction we restrict to the constitutive classes:

T = ˇ̌T(c,∇c, ˇ̌μ,∇ ˇ̌μ,D, ˇ̌p), (A.39a)

Jv = ˇ̌Jv(c,∇c, ˇ̌μ,∇ ˇ̌μ,∇ ˇ̌p), (A.39b)

γ = ˇ̌γ(c, ˇ̌μ, ˇ̌p). (A.39c)

Appendix B. Proofs of Lemmas 3.1 and Theorem 3.1

Lemma B.1. (Relations between chemical potential-like quantities) The chemical

potential-like quantities are related via the following identities :

μ̂ = ρ ˆ̂μ+ ˆ̂ψ[[ρ]], (B.1a)

μ̌ = ρ ˇ̌μ− βρ2 ˇ̌ψ, (B.1b)

μ̌ =
ρ2

ρ1ρ2
μ̂. (B.1c)

Proof. The first identity (B.1a) follows by (i) substituting the first identifica-

tion from (3.33) into μ̂, (ii) applying the chain rule and (iii) using the identity

ρ̂′(φ) = [[ρ]].

The second identity (B.1b) follows in a similar fashion from the third identifi-

cation in (3.33) by noting that ρ̌′(c) = −βρ2.
The last identity (B.1c) is a direct consequence of the chain rule for variational

derivatives. Alternatively, one can apply a direct computation which we present

here. Substituting the identification (3.33) into μ̌ and expanding the derivatives by

the chain rule gives:

μ̌ =
∂Ψ̂(φ(c), φ′(c)∇c)

∂c
− div

∂Ψ̂(φ(c), φ′(c)∇c)
∂∇c

=
∂Ψ̂(φ(c), φ′(c)∇c)

∂φ
φ′(c) +

∂Ψ̂(φ(c), φ′(c)∇c)
∂∇φ · ∇c φ′′(c)

− div

(
∂Ψ̂(φ(c), φ′(c)∇c)

∂∇φ

)
φ′(c)− ∂Ψ̂(φ(c), φ′(c)∇c)

∂∇φ · ∇(φ′(c))

=
∂Ψ̂(φ(c), φ′(c)∇c)

∂φ
φ′(c)− div

(
∂Ψ̂(φ(c), φ′(c)∇c)

∂∇φ

)
φ′(c)

= μ̂φ′(c). (B.2)

Recalling the relation between φ and c, (2.33), completes the proof.

Theorem B.1. (Modeling restrictions independent of order parameter and free

energy type) The restrictions in (3.32) are equivalent. In particular, we have the
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relations between the pressures of the various modeling choices :

p̂ = ˆ̂p+ ˆ̂ψ {ρ} , (B.3a)

p̌ = ˇ̌p+ ρ ˇ̌ψ, (B.3b)

p̌ = p̂+ μ̂φ. (B.3c)

Proof. We start off by showing equivalence of the restrictions (3.32a) and (3.32b).

Consider the term in brackets in the first member of (3.32a) in isolation. Substitut-

ing the identification of the equivalence classes and the identity (3.37), and applying

Lemma 3.1 provides:

T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

= T̂+∇φ⊗ ∂Ψ̂

∂∇φ + (p̂+ μ̂φ− Ψ̂)I

= ˆ̂T+∇φ⊗ ρ
∂ ˆ̂ψ

∂∇φ + (p̂+ ρ ˆ̂μφ+ ˆ̂ψ[[ρ]]φ− ρ ˆ̂ψ)I

= ˆ̂T+∇φ⊗ ρ
∂ ˆ̂ψ

∂∇φ + ρ ˆ̂μφI+ (p̂− ˆ̂ψ {ρ})I

= ˆ̂T0 +∇φ⊗ ρ
∂ ˆ̂ψ

∂∇φ + ρ ˆ̂μφI+
(
p̂− ˆ̂p− ˆ̂ψ {ρ}

)
I. (B.4)

Next, we consider the term in brackets in the second and third members in isolation

and apply Lemma 3.1:

μ̂+ αp̂ = ρ ˆ̂μ+ ˆ̂ψ[[ρ]] + αp̂

= ρ ˆ̂μ+ α(p̂− ˆ̂ψ {ρ})
= ρ ˆ̂μ+ α ˆ̂p+ α(p̂− ˆ̂p− ˆ̂ψ {ρ}). (B.5)

Equivalence of (3.32a) and (3.32b) results with the observation that the last

members in (B.4) and (B.5) vanish with the variable transformation:

p̂ = ˆ̂p+ ˆ̂ψ {ρ} . (B.6)

We proceed with showing the equivalence of (3.32c) and (3.32d). Applying

Lemma 3.1 and the identity (3.37) to the term in brackets in the first member of

(3.32c) provides:

Ť0 +∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I = Ť+∇c⊗ ∂Ψ̌

∂∇c + (p̌− Ψ̌)I

= ˇ̌T+∇c⊗ ρ
∂ ˇ̌ψ

∂∇c + (p̌− ρ ˇ̌ψ)I

= ˇ̌T0 +∇φ⊗ ρ
∂ ˇ̌ψ

∂∇φ + (p̌− ˇ̌p− ρ ˇ̌ψ)I. (B.7)
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Using Lemma 3.1 the term in brackets in the second and third members of (3.32c)

takes the form:

μ̌

ρ
+ βp̌ = ˇ̌μ− β(ρ ˇ̌ψ − p̌) = ˇ̌μ+ β ˇ̌p+ β(p̌− ˇ̌p− ρ ˇ̌ψ). (B.8)

Equivalence of (3.32c) and (3.32d) is a consequence of the observation that the last

members in (B.7) and (B.8) disappear with the variable transformation:

p̌ = ˇ̌p+ ρ ˇ̌ψ. (B.9)

We finalize the proof by showing equivalence of (3.32a) and (3.32c). Again on the

account of Lemma 3.1 and (3.37), the term in brackets in the first member of (3.32a)

can be written as

T̂0 +∇φ⊗ ∂Ψ̂

∂∇φ + (μ̂φ− Ψ̂)I

= T̂+∇φ⊗ ∂Ψ̂

∂∇φ + (p̂+ μ̂φ− Ψ̂)I

= Ť+∇c⊗ ∂Ψ̌

∂∇c + (p̂+ μ̂φ− Ψ̌)I

= Ť0 +∇c⊗ ∂Ψ̌

∂∇c − Ψ̌I+ (p̂− p̌+ μ̂φ)I. (B.10)

Finally, we focus on the second and third member in (3.32a). On the account of

Lemma 3.1, we write the sequence of identities:

ζ(μ̂+ αp̂) =
{ρ}
ρ1ρ2

μ̂+ βp̂ =
{ρ}
ρ2

μ̌− βμ̂φ+ βp̌+ β(p̂− p̌+ μ̂φ)

=
{ρ}
ρ2

μ̌− {ρ}
ρ2

μ̌φ+ βp̌+ β(p̂− p̌+ μ̂φ)

=
μ̌

ρ
+ βp̌+ β(p̂− p̌+ μ̂φ). (B.11)

Elimination of the last terms in (B.10) and (B.11) via the variable transformation

p̌ = p̂+ μ̂φ, (B.12)

and recalling (3.35) and (3.36) concludes the proof.
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