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 A B S T R A C T

We present a framework for modeling liver regrowth on the organ scale that is based on 
three components: (1) a multiscale perfusion model that combines synthetic vascular tree 
generation with a multi-compartment homogenized flow model, including a homogenization 
procedure to obtain effective parameters; (2) a poroelastic finite growth model that acts on all 
compartments and the synthetic vascular tree structure; (3) an evolution equation for the local 
volumetric growth factor, driven by the homogenized flow rate into the microcirculation as a 
measure of local hyperperfusion and well-suited for calibration with available data. We apply 
our modeling framework to a prototypical benchmark and a full-scale patient-specific liver, for 
which we assume a common surgical cut. Our simulation results demonstrate that our model 
represents hyperperfusion as a consequence of partial resection and accounts for its reduction 
towards a homeostatic perfusion state, exhibiting overall regrowth dynamics that correspond 
well with clinical observations. In addition, our results show that our model also captures local 
hypoperfusion in the vicinity of orphan vessels, a key requirement for the prediction of ischemia 
or the preoperative identification of suitable cut patterns.

. Introduction

Liver cancer is the seventh most commonly diagnosed cancer and the third leading cause of cancer mortality worldwide (Bray 
t al., 2018). The removal of cancerous portions of the liver via surgical intervention is known as partial liver resection or 
artial hepatectomy. The liver is able to regenerate back to full size, where up to 70% of the original liver mass can be 
emoved (Michalopoulos, 2007). The tissue growth associated with liver regeneration severely affects the perfusion capability of 
he liver, which liver functionality critically depends on (Debbaut, 2013).
Computational liver models that predict regeneration, regrowth and perfusion for a patient-specific cut liver have the potential 

o support surgeons in assessing and planning partial liver resections. Various models based on continuum mechanics have been 
roposed to model the growth of biological tissues (Rodriguez et al., 1994; Ambrosi et al., 2011; Lubarda and Hoger, 2002; Menzel 
nd Kuhl, 2012; Kuhl, 2014; Garikipati et al., 2004; Jones and Chapman, 2012; Cyron and Humphrey, 2017; Ambrosi et al., 2019), 
ncluding applications to the heart (Kroon et al., 2009; Göktepe et al., 2010, 2011), brain (Budday et al., 2020, 2014), tumor 
issue (Ambrosi and Mollica, 2002), arterial wall growth (Kuhl et al., 2007; Sankaran et al., 2013), cardiovascular modeling (Schwarz 
t al., 2023) and vein graft growth (Ramachandra et al., 2017). A major focus lies on specifying individual growth laws and 
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identifying factors that drive growth for each specific application. These models can simulate the volumetric growth of tissue 
stimulated by a mechanical driving force without the necessity of resolving the underlying processes at the cell level (Christ et al., 
2017). To the best of our knowledge, there is currently no continuum mechanics model that addresses liver regrowth after partial 
hepatectomy.

Modeling of liver growth is strongly linked to modeling perfusion, and therefore requires an appropriate patient-specific 
representation of the hierarchical liver vasculature. Given the limited resolution of in-vivo imaging, reconstruction from imaging 
data is generally only possible for the few largest vessels in the hierarchy. Discrete representations of hierarchical vascular trees 
can be synthetically generated by computer-based methods built on energy minimization principles (Schreiner and Buxbaum, 1993; 
Karch et al., 1999; Schwen and Preusser, 2012; Guy et al., 2019). Several continuum models have been developed to simulate liver 
perfusion. Many of them focus on the microcirculation in idealized liver lobules (Lorente et al., 2020a; Bonfiglio et al., 2010; Debbaut 
et al., 2014b), and they have also been extended to simulate the relation between liver function and perfusion (Ricken et al., 2015; 
Lambers et al., 2024). Some models describe perfusion in the whole organ, coupling continuum flow models with synthetically 
generated vascular trees (Rohan et al., 2018; Ebrahem et al., 2024) or experimentally determined trees (Debbaut et al., 2010; Stoter 
et al., 2017). To account for the vascular features over many spatial scales, one approach is to partition the vasculature into spatially 
co-existing compartments and homogenize them based on Darcy’s law (Hyde et al., 2013). This concept has been applied to model 
the perfusion in the heart (Cookson et al., 2012; Michler et al., 2013) and in the liver (Rohan et al., 2018).

Only a few models exist that represent liver regeneration on the organ scale (Christ et al., 2017). They are primarily 
phenomenological, mostly based on ordinary differential equations and focus on the temporal evolution of the regeneration process, 
integrating risk factors for postoperative liver failure (Yamamoto et al., 2016; Shestopaloff and Sbalzarini, 2014; Periwal et al., 2014; 
Cook et al., 2015). Models of angiogenic and remodeling processes have been proposed in the context of the continuum theory 
of porous media for two-dimensional liver lobules (Ricken et al., 2010). At the cell scale, discrete models, e.g. based on cellular 
automata, have been developed to represent the proliferation of liver cells that occur during regeneration (Binder et al., 2008; 
Adhyapok et al., 2020). Additionally, agent-based models have been widely used to simulate cell behavior and tissue mechanics, 
utilizing both lattice-based (e.g., cellular automata) and off-lattice approaches (e.g., deformable cell models) (Drasdo et al., 2007), 
as well as hybrid discrete-continuum models (Osborne et al., 2010; Ghallab et al., 2019). A model that integrates cell-scale dynamics 
within a lobule-scale framework is published in Höhme et al. (2007). In another study (Drasdo and Höhme, 2005), a single-cell-based 
biophysical model has been developed to investigate the spatio-temporal growth dynamics of two-dimensional tumor monolayers 
and three-dimensional tumor spheroids. In Höhme et al. (2010), a mathematical model has been developed to predict the mechanism 
of hepatocyte-sinusoid alignment during liver regeneration. A separate study (König et al., 2012) introduced a model that focuses on 
the overall kinetic processes of hepatic glucose metabolism. Another approach at the cell scale is based on Monte Carlo simulations, 
which offer a stochastic framework for modeling the dynamics of tissue-cell populations and investigating complex processes such 
as pattern formation and tissue repair (Radszuweit et al., 2009; Drasdo et al., 1995). A comprehensive whole-organ model, however, 
that connects liver regrowth and the associated change in perfusion capability across the relevant scales is still lacking.

In this work, we will develop such a multiscale-multiphysics framework that integrates three models associated with different 
physics at multiple spatial scales to simulate the effect of liver tissue regrowth on the perfusion capability of a full-scale liver. Our 
article is organized as follows: in Section 2, we briefly review the multiscale mechanisms of hepatic vasculature and perfusion, 
the perfusion-related factors that drive liver regrowth, and derive basic concepts for their modeling. In Section 3, we present a 
multiscale perfusion model by incorporating a discrete vascular tree approach that represents blood supply and drainage at the 
organ scale and a multi-compartment homogenized flow model that represents perfusion at the lower levels of the hierarchical 
tree network and the liver microcirculation, based on our prior work in Jessen et al. (2022, 2023) and Jessen et al. (2024). In 
Section 4, we develop our framework by successively combining the multiscale perfusion model with an isotropic growth model 
of a poroelastic medium that represents hyperplasia of liver tissue at the microcirculation. We also discuss appropriate coupling 
mechanisms and boundary conditions, and motivate the driving force that initiates compensatory growth of liver tissue. We briefly 
illustrate the characteristics of each modeling step via a two-dimensional test problem. In Section 5, we demonstrate the capabilities 
of our computational framework for a full-scale patient-specific liver example by correctly predicting the typical perfusion outcome 
associated with a common surgical cut pattern. Section 6 closes with a summary and an outlook.

2. Physiological mechanisms of liver regrowth across different scales

We start with a brief description of the multiscale anatomy of the liver, with a particular focus on its vasculature that determines 
liver perfusion. We then summarize the perfusion-related mechanisms at the microcirculation scale that drive regrowth. As a starting 
point for our contribution, we motivate basic concepts how these physiological mechanisms at the microcirculation scale can be 
transferred into a computational modeling framework that represents liver regrowth at the organ scale.

2.1. Multiscale vasculature and liver perfusion

The liver is primarily known as the main site of metabolization and detoxification of xenobiotics in the human body. However, 
the liver serves a multitude of further functions, such as combating infections; storing iron, vitamins and other essential chemicals; 
manufacturing, breaking down and regulating numerous hormones; or producing enzymes and proteins which are responsible for 
most chemical reactions in the body. All liver functions rely on its vasculature that enables the perfusion of the complete liver with 
blood (Lorente et al., 2020b). Fig.  1 illustrates the multiscale nature of liver vasculature.
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Fig. 1. Multiscale liver vasculature (organism- and lobule-scale pictures from Debbaut, 2013, sinusoid-scale picture from Frevert et al., 2005).

At the organ (or macro-) scale, the hepatic artery and the portal and hepatic veins with diameters of up to 1 cm provide blood 
supply and drainage. The hepatic artery originates from the heart and carries oxygen-rich blood, and the portal vein stems from the 
digestive tract and carries nutrient-rich blood. The hepatic vein re-inserts the blood back into the vena cava and the cardiovascular 
system. At the lobule (or meso-) scale, the blood is driven through sinusoids, small capillaries with a diameter of approximately 
10 μm. The organ-scale vessels and the sinusoid microcirculation are connected by a hierarchical vascular tree that consists of up to 
20 levels of bifurcations (Debbaut et al., 2014a). The sinusoids are uniformly distributed throughout the entire liver volume, forming 
a three-dimensional network around rows of hepatocytes that are responsible for the metabolic liver functions. The sinusoids are 
arranged in lobules with a characteristic size of 1.5 mm, forming the fundamental building blocks of the liver. Each lobule is 
classically idealized as a prismatic volume of hexagonal cross section with a supplying triad made of a hepatic artery, a portal vein 
and a bile duct at each of the six hexagon corners, and a draining central vein along the axis of the lobule.

At the sinusoid (or micro-) scale, the liver is composed of specialized cells and structures that work together to maintain its 
functions. Fig.  1 also illustrates the main functional units at the microscale.

2.2. Liver regeneration and driving mechanisms at the microscale

The liver possesses the remarkable ability to regenerate itself after partial resection (Michalopoulos, 2007; Michalopoulos and 
Bhushan, 2021). Since blood from the portal vein cannot easily bypass the liver to return to the heart, almost the same volume of 
blood needs to flow through the smaller liver remnant after partial resection (on average, about 1.25 liters of blood per minute). As 
a consequence, massive hemodynamic changes occur immediately after partial resection. To enable the same blood flow through 
a reduced cross section, the portal pressure needs to increase (portal hypertension). In contrast to the portal vein, blood from the 
hepatic artery can continue to flow through the aorta to other parts of the gastrointestinal tract and legs. Therefore, the hepatic 
artery contracts, when the portal pressure increases (hepatic arterial buffer response). As a result of hypertension, a larger difference 
in pressure occurs between the portal venules on the one hand and the central veins on the other hand. Therefore, the flow increases 
in the remaining vasculature, leading to a larger blood velocity and therefore increased shear stresses within the sinusoids. This state 
is called hyperperfusion.

The restoration of liver mass primarily occurs through the rapid cell division of hepatocytes (proliferation) (Hohmann et al., 
2014). Hepatocytes are the predominant cells in liver tissue, comprising about 80% of the liver mass. As illustrated in Fig.  1, they 
are arranged in plates or cords, radiating outward from the central veins within lobules. Hepatocytes perform numerous essential 
tasks, including metabolism of carbohydrates, lipids, and proteins, and detoxification of drugs and toxins. There is consensus that
hyperperfusion is the central stimulus that triggers liver regeneration. Within the biomedical literature, there are different models 
that connect hyperperfusion and hepatocyte proliferation at the cell level, see e.g. Abshagen et al. (2012). In this work, we focus 
on the recent model by Lorenz et al. (2018) and Große-Segerath and Lammert (2021), which is illustrated in Fig.  2 and that we 
briefly outline in the following.
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Fig. 2. Liver size regulation after surgical resection (adapted from Große-Segerath and Lammert, 2021).

Immediately after partial resection, the increase in blood flow through the remaining sinusoids and the associated increase in 
shear stress at the vessel walls stimulates sinusoidal endothelial cells to release vasodilators such as nitric oxide (NO). Sinusoidal 
endothelial cells line the liver sinusoids and form a barrier between the blood and hepatocytes, see Fig.  1. The dilation of the 
sinusoids enables a larger flow of blood at a given pressure level and therefore limits portal hypertension, blood velocity and wall 
shear stress. Vasodilation requires the mechanical stretching of the endothelial cell layer, resulting in the release of growth-promoting 
angiocrine signals and mechanoresponsive 𝛽1 integrin. Angiocrine signals constitute the main stimulus for hepatocyte proliferation, 
and hence are essential for liver regrowth. Integrin activation results in the reorganization of the components of the extracellular 
matrix, triggering the release of cytokines. Both integrin and cytokines contribute to the release of further growth factors to support 
hepatocyte proliferation.

The proliferation of hepatocytes increases the volume of the remaining lobules (hyperplasia), where the hepatocyte plates are up 
to twice as thick as they initially are (Michalopoulos, 2007). Thus, the remaining liver expands in mass to compensate for the lost 
tissue (compensatory growth), but does not restore its original shape and the excised parts do not grow back (Fausto et al., 2006). 
To guarantee liver function, the added hepatocyte cells need to be supplied with blood in the same way as before, which requires 
the formation of new vessels (angiogenesis), primarily at the level of the microcirculation. Angiogenesis is primarily based on the 
proliferation of sinusoidal endothelial cells. It is driven by vascular endothelial growth factor (VEGF) released by proliferating 
hepatocytes and the mechanically stretched endothelial cells themselves. The resulting vascular expansion process leads to the 
formation of an extended vascular network of sinusoids (lobular remodeling).

The rate of regeneration depends on several factors, including the extent of the resection, the general physical condition and 
health of the patient, and any preexisting liver diseases (Hohmann et al., 2014; Furchtgott et al., 2009; Koniaris et al., 2003). In 
general, hepatocyte proliferation starts immediately and heavily after partial liver resection (early phase of liver regeneration). 
Angiogenesis and lobular remodeling starts after a few days (delayed phase of liver regeneration). For instance, following a two-
third removal, the normal liver weight is restored within 8 to 15 days in humans, followed by several weeks of slow lobular 
remodeling (Michalopoulos, 2007).

Once the lost tissue mass and the vascular network is restored, hyperperfusion ceases, as enhanced blood flow and pressure 
is not required in the hepatic vasculature to guarantee the required volume of blood to pass through the liver. Therefore, all cell 
proliferation processes stop and liver regeneration is complete.
4
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Fig. 3. Concept for modeling liver regrowth.

2.3. Fundamental concepts for modeling hyperperfusion-driven liver regrowth

Building upon our understanding of the multiscale driving mechanisms behind liver regrowth that we outlined above, we develop 
the following fundamental modeling concept, illustrated in Fig.  3:

A. Multiscale perfusion model: As the key stimulus for liver regrowth is hyperperfusion in the microcirculation, understanding 
the current state of blood perfusion at the lobule scale is the key prerequisite for assessing liver regrowth. We therefore require 
a detailed perfusion model, based on suitable scale-bridging concepts, which is able to separate the overall liver perfusion into 
macro- and mesoscale blood distribution and collection, and microscale blood flow through the functional units of the liver 
at the lobule scale. We can then use the corresponding model representation of microscale blood flow to obtain a measure 
of hyperperfusion in a particular region of the liver.

B. Growth evolution model: Once a multiscale perfusion model is established that can assess hyperperfusion at the lobule 
scale at each point of the liver domain, we can set up a (phenomenological) growth evolution equation that relates an 
increased level of blood flow in the microcirculation to a growth rate of homogenized liver tissue, which represents the 
effect of hepatocyte proliferation. An important requirement is that the growth evolution equation is based on parameters 
that can be calibrated by available experimental data.

C. Organ-scale growth model: Once the growth evolution model for homogenized liver tissue is known, it can be integrated 
into an organ-scale growth model, for which well-established concepts exist in continuum poroelasticity. It represents 
macroscale growth, locally driven by the growth evolution equation, which depends on the local state of hyperperfusion in the 
microcirculation. We assume that lobular remodeling in the microcirculation takes effect immediately, such that macroscale 
growth of liver tissue also implies an increase in volume of the vasculature. In turn, growth of the liver tissue enlarges the 
microcirculatory domain of the perfusion model, such that hyperperfusion can be regulated at each point of the liver.

In the following, we will motivate and describe in detail the technical aspects regarding our multiscale perfusion model as well 
as regarding our growth evolution and organ-scale growth models.

3. A multi-compartment perfusion model

In this section, we describe our multiscale perfusion model that corresponds to part A of our modeling framework illustrated in 
Fig.  3. It consists of two fundamental components: (a) a synthetic discrete model that represents the upper levels of the hierarchical 
vasculature for blood distribution and collection, and (b) a homogenized flow model that is divided into multiple compartments to 
individually represents the lower levels of the hierarchical vasculature for blood distribution and collection, and the microcirculation.
5
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3.1. Discrete non-intersecting vascular trees for blood supply and drainage

Our multiscale perfusion model necessitates a detailed description of the vascular trees inside the liver. Since in-vivo imaging 
methods are limited in resolution, we generate these trees synthetically, where it is also possible to incorporate patient-specific 
vessel data up to the resolution available. Our generation framework is based on our previous work (Jessen et al., 2022, 2023), 
which we recently extended to generate multiple non-intersecting trees inside the same perfusion domain (Jessen et al., 2024).

3.1.1. Mathematical formulation
A discrete vascular tree is represented as a directed graph T = (V,A) with nodes 𝑢 ∈ V and segments 𝑎 ∈ A. Each segment 𝑎 = 𝑢𝑣

of A is defined by the geometric locations of its proximal and distal node 𝑥𝑢 and 𝑥𝑣, its length 𝓁𝑎 = ‖𝑥𝑢 − 𝑥𝑣‖, volumetric flow 𝑄̂𝑎
and radius 𝑟𝑎. Thus, a 𝑣𝑒𝑠𝑠𝑒𝑙 is simplified to a rigid and straight cylindrical tube. A tree has a single root node 0 and (multiple) leaves
𝑣 ∈ L, which are the distal nodes of terminal segments. We assume blood to be incompressible, homogeneous and a Newtonian 
fluid in the laminar regime. The pressure drop over a segment is described by Poiseuille’s law with 

𝛥𝑝𝑎 = 𝑅𝑎𝑄̂𝑎 ∀𝑎 ∈ A, (1)

where the hydrodynamic resistance 𝑅𝑎 of each segment 𝑎 is 

𝑅𝑎 =
8𝜂
𝜋

𝓁𝑎
𝑟4𝑎

∀𝑎 ∈ A. (2)

We set the dynamic blood viscosity 𝜂 to a (constant) value of 3.6 cP and further assume a homogeneous flow distribution of our 
(given) root flow 𝑄̂perf to all 𝑁 leaves, leading to the terminal flow 𝑄̂term = 𝑄̂perf∕𝑁 . At intermediate branching nodes, the flow 
can be computed using Kirchhoff’s law with 

𝑄̂𝑢𝑣 =
∑

𝑣𝑤∈A
𝑄̂𝑣𝑤 ∀𝑣 ∈ V ⧵ (0 ∪ L) . (3)

We note that more complex viscosity laws and flow distributions to take into account non-Newtonian behavior of the blood such 
as the Fåhræus Lindqvist effect can be also incorporated into the framework (Jessen et al., 2023).

The tree can be based on a combination of different goal functions and constraints (Jessen et al., 2023). Here, we choose to 
minimize the total power of the tree, which consists of the power to maintain blood inside the vessels 𝑃vol and the (viscous) power 
to move blood through vessels 𝑃vis. The cost function for the vascular tree thus becomes 

𝑓T = 𝑃vol + 𝑃vis =
∑

𝑎∈A
𝑚𝑏𝜋𝓁𝑎𝑟

2
𝑎 +

8𝜂
𝜋

𝓁𝑎
𝑟4𝑎

𝑄̂2
𝑎, (4)

where 𝑚𝑏 is the metabolic demand factor of blood, which we set to 0.6 μWmm−3 (Liu and Kassab, 2007). Since we precompute all 
flow values using (3), we can rewrite (4) to 

𝑓T =
∑

𝑎∈A
𝑤𝑎𝓁𝑎, (5)

where weight 𝑤𝑎 is defined at each segment 𝑎 with 

𝑤𝑎 = 𝑚𝑏𝜋𝑟
2
𝑎 +

8𝜂
𝜋𝑟4𝑎

𝑄̂2
𝑎. (6)

Our formulation does not include global constraints between nodes and each summand in (5) is decoupled. As shown in Jessen et al. 
(2024), the (optimal) radius of each segment 𝑎 can then be independently computed with 

𝑟𝑎 = 6

√

16𝜂
𝑚𝑏𝜋2

3
√

𝑄̂𝑎. (7)

The problem of finding the optimal geometry of a tree now only consists of finding the optimal nodal positions 𝑥 and corresponding 
lengths 𝓁.

We achieve the optimality requirement for the geometry of a single tree by optimizing the global geometry (position of all 
branch nodes) using a nonlinear optimization problem (NLP) (Bertsekas, 1997; Boyd and Vandenberghe, 2004). We include the 
nodal positions 𝑥 and the lengths 𝓁 of all segments inside the vector of optimization variables 𝑦 = (𝑥,𝓁). With physical lower 
bounds 𝓁− and numerical upper bounds 𝓁+, the best geometry is found in 

𝑌 = R3|V| × [𝓁−,𝓁+]A. (8)

For the liver, however, we require the combination of several trees at the same time. It is generally accepted that the hepatic 
artery and portal vein can be combined to a single supplying tree, as their vessels are mostly aligned with each other after a few 
generations, see Debbaut et al. (2014b). Therefore, our objective is to generate one supplying tree (hepatic artery and portal vein) 
and one draining tree (hepatic vein), which do not intersect and are optimal both in topology and geometry in regards to (5) . To 
ensure that our supplying tree T1 and draining tree T2 do not intersect, we need to introduce coupling constraints between both 
6
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Fig. 4. Model problem: supplying (in red) and draining (in blue) vascular trees.

trees (Jessen et al., 2024). We first introduce a set of (virtual) connections A12 between neighboring nodes of both trees, defined 
with 

A12 = {(𝑣1, 𝑣2)| 𝑣1 ∈ V1, 𝑣2 ∈ V2, ‖𝑥𝑣1 − 𝑥𝑣2‖ < 1.25(𝑟𝑢1𝑣1 + 𝑟𝑢2𝑣2 )}. (9)

We then introduce a set of excursion nodes E, which includes all nodes with exactly one proximal and one distal node. These nodes 
are added to each set of intersecting vessels (Jessen et al., 2024). Consequently, the set of optimization variables 𝑦12 = (𝑦1, 𝑦2) now 
consists of both trees and the best geometry is found in 

𝑌 12 = 𝑌 1 × 𝑌 2 × A12. (10)

Our extended NLP then reads

min
𝑦12∈𝑌 12

2
∑

𝑖=1

∑

𝑎𝑖∈A𝑖
𝓁𝑎𝑖𝑤𝑎𝑖 (11)

s.t. 0 = 𝑥𝑢1 − _𝑥𝑢1 , 𝑢1 ∈ V1
0 ∪ L1 (12)

0 = 𝑥𝑢2 − _𝑥𝑢2 , 𝑢2 ∈ V2
0 ∪ L2 (13)

0 = 𝓁2
𝑢1𝑣1

− ‖𝑥𝑢1 − 𝑥𝑣1‖
2, 𝑢1𝑣1 ∈ A1 (14)

0 = 𝓁2
𝑢2𝑣2

− ‖𝑥𝑢2 − 𝑥𝑣2‖
2, 𝑢2𝑣2 ∈ A2 (15)

0 = 𝓁2
𝑣1𝑣2

− ‖𝑥𝑣1 − 𝑥𝑣2‖
2, 𝑣1𝑣2 ∈ A12 (16)

𝓁𝑣1𝑣2 > (𝑟𝑢1𝑣1 + 𝑟𝑢2𝑣2 ) + 𝜖, 𝑣1𝑣2 ∈ A12 (17)

𝓁𝑢1𝑣1 > _𝓁𝑢1𝑣1 , 𝑣1 ∈ E1 (18)

𝓁𝑣1𝑤1
> _𝓁𝑣1𝑤1

, 𝑣1 ∈ E1 (19)

𝓁𝑢2𝑣2 > _𝓁𝑢2𝑣2 , 𝑣2 ∈ E2 (20)

𝓁𝑣2𝑤2
> _𝓁𝑣2𝑤2

, 𝑣2 ∈ E2. (21)

Here, (16) and (17) ensure that the distance between two nodes (of tree 1 and 2) is at least their vessel radii plus a threshold 
𝜖. By using (18)–(21), we prohibit excursion nodes to move along the path between their proximal and distal nodes. After the 
extended NLP is solved, both trees are checked for intersections. New excursion nodes are subsequently created at newly identified 
intersections. The process of adding excursions and solving the extended NLP is repeated until no further intersections are found. 
We note that it is straightforward to extend this formulation and procedure to more than two trees (Jessen et al., 2024).
7
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Table 1
Parameters of the discrete vascular structure generated on a circular domain.
 𝑁seg 𝑁term 𝑝root [ kg

mms2 ] 𝑄̂perf [ mm3

s ] 𝑚𝑏 [ μW
mm3 ] 𝜂 [ kg

mms ]  
 Supplying tree 43,981 21,991 0.4 80.0 0.6 3.6 × 10−6 
 Draining tree 43,857 21,929 0.0 80.0 0.6 3.6 × 10−6 

3.1.2. Algorithmic framework and computer implementation
We use the framework described in Jessen et al. (2022) and Jessen et al. (2024) to generate each tree with a (locally) optimal 

topology. First, we sample 𝑁 terminal nodes 𝑥̄ for each tree inside the (non-convex) perfusion volume (liver) and connect them to the 
manually set root positions. From these initial (fan) shapes, new topologies are explored by swapping segments. Each swap changes 
the parent nodes between a sampled pair of nodes. The new topology is accepted heuristically based on a simulated annealing (SA) 
approach (Jessen et al., 2022, 2024). After a fixed number of swaps, the global geometry is optimized and intersections are resolved 
as explained. Once the trees are generated, we fix all nodal positions, so that we can retrieve the length 𝓁𝑎 for each segment 𝑎. For 
both trees, we prescribe a constant pressure drop 𝛥𝑝 between all terminal nodes and the root node, so that we can compute the 
radius 𝑟𝑎, the volumetric flow 𝑄̂𝑎 and further parameters such as the mean blood velocity 𝑣̄𝑎 = 𝑄̂𝑎

𝜋𝑟2𝑎
.

For illustration purposes, we consider a circular domain with a radius of 10 mm. We choose the root positions of the supplying 
and draining trees at two opposite top and bottom points of the circle, generate corresponding groups of (randomly distributed) 
terminal points within the circle, and choose a pressure difference at the roots and a root flow rate of 𝑄̂perf. Table  1 lists key 
parameters. Fig.  4 illustrates the resulting supplying and draining trees. We observe that the two trees are not intersecting each 
other, using the third dimension to move their vessel segments around each other.

We carried out first steps to validate our synthetically generated tress structures via a comprehensive comparison with 
experimentally characterized vessel networks for a human liver, with very good results (Jessen et al., 2022, 2023).

3.2. Homogenization of blood flow through hierarchical vascular networks

According to Fig.  1 and the associated discussion in Section 2, the characteristic size of vessel diameters across the hierarchy of the 
supplying and draining trees ranges from several millimeters for the macroscale arteries and veins to 100 micrometers for the smallest 
arterioles and venules (Debbaut, 2013). Direct flow modeling on the vascular tree geometry provided by the discrete model presented 
above is possible, see e.g. the technologies reviewed in Formaggia et al. (2010), but requires a significant computing effort, especially 
within an iterative solution procedure. To balance resolution accuracy and computational effort, we use the lower hierarchies of the 
discrete vascular trees as the basis for parameter estimation of a porous medium, where flow can be homogenized in a continuum 
sense. To enable us to separately represent homogenized flow in different parts of the vascular tree, we compartmentalize the 
vasculature into spatially co-existing compartments and associate only those vessels to each compartment that belong to the selected 
(supplying or draining) tree and the selected range of spatial scales (Cookson et al., 2012; Michler et al., 2013; Hyde et al., 2013; 
Rohan et al., 2018).

3.2.1. Multi-compartment homogenized flow equations
To set up the model, we divide the discrete vessel structure (or parts of it) into 𝑁 compartments, assigning to each compartment 

𝑖 = 1,… , 𝑁 its own (positive definite) permeability tensor 𝐊𝑖, pore pressure 𝑝𝑖, source term 𝜃𝑖, and homogenized flow velocity 𝐰𝑖. 
We consider the system of first-order differential equations that is governed by Darcy’s law and the continuity equation 

𝐰𝑖 +𝐊𝑖∇𝑝𝑖 = 𝟎 in 𝛺, (22a)

∇ ⋅ 𝐰𝑖 + 𝑞𝑖 = 𝜃𝑖 in 𝛺, (22b)

in each compartment 𝑖, in an open bounded region 𝛺 ⊂ 𝑑 , with space dimension 𝑑 and impermeable outer boundary 𝛤 . 
The quantities 𝑞𝑖 denote the pressure-dependent intercompartmental flow rate density between compartment 𝑖 and all other 
compartments and are given by: 

𝑞𝑖 =
𝑁
∑

𝑘=1
𝛽𝑖,𝑘(𝑝𝑖 − 𝑝𝑘), (23)

where 𝛽𝑖,𝑘 ≥ 0 denotes the perfusion coefficient for coupling compartments 𝑖 and 𝑘 for 𝑖 ≠ 𝑘. As such, fluid exchange is absent 
in pressure equilibrium. We assume 𝛽𝑖,𝑘 = 𝛽𝑘,𝑖 which is consistent with the mass balance 

∑

𝑖 𝑞𝑖 = 0. Due to the assumption of an 
incompressible fluid, we use the terms mass flow and volumetric flow interchangeably.

Substituting (22a) into (22b) converts the first-order system into an equivalent system of one second-order differential equation 
per compartment: 

−∇ ⋅ (𝐊𝑖∇𝑝𝑖) + 𝑞𝑖 = 𝜃𝑖 in 𝛺. (24)

Here, the pressure 𝑝𝑖 is the sole unknown variable, and the compartment velocities 𝐰𝑖, 𝑖 = 1,… , 𝑁 follow from Darcy’s law in (22a). 
We supplement the model with a Neumann boundary condition to account for the impermeability: 

− (𝐊𝑖∇𝑝𝑖) ⋅ 𝐧 = 0 on 𝛤𝑁 = 𝛤 . (25)
8
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Fig. 5. Averaging volume at spatial position 𝐱.

3.2.2. Estimation of permeability tensors and perfusion coefficients
In the next step, we describe the computation of the model parameters directly from the vessel network, particularly the perme-

ability tensors 𝐊𝑖 for each compartment and the intercompartmental perfusion coefficients 𝛽i,k, using averaging procedures (Hyde 
et al., 2013; Huyghe and Van Campen, 1995a,b; Vankan et al., 1997). In the following, the index set K𝑖(𝐱) contains all indices of 
the vessels of compartment 𝑖 that are located at least partially within an averaging volume (AV) of spatial position 𝐱. Furthermore, 
the index set I𝑖𝑘 contains all indices of the vessels within the AV that belong to compartment 𝑖 but share a node with one or more 
vessels of compartment 𝑘.

The components of the permeability tensor at spatial position 𝐱 for a network of straight rigid tubes subject to Poiseuille’s law 
can be computed according to 

𝐾𝐼𝐽 (𝐱) =
𝜋

8𝜂𝑉AV

∑

𝑎∈K𝑖(𝐱)

(𝑟𝑎)4𝛥𝑥𝑎,𝐼𝛥𝑥𝑎,𝐽
𝑙𝑎

, 𝐼, 𝐽 = 1, 2, 3 (26)

where 𝑉AV denotes the volume of the AV, 𝜂 the dynamic viscosity, 𝑟𝑎 the vessel radius, 𝑙𝑎 the vessel length, and 𝛥𝑥𝑎,𝑖 and 𝛥𝑥𝑎,𝑗
the components of the spatial vessel segment vector of vessel 𝑎 (see Fig.  5). Note that only the segment of the vessel that actually 
intersects the AV is considered for 𝛥𝑥𝑎 and 𝑙𝑎.

Unlike the permeability tensor, which in combination with a given (and constant) dynamic viscosity can be determined solely 
based on geometry, the perfusion coefficients require flow quantities (Hyde et al., 2013). The synthetically generated vascular trees 
assume Poiseuille’s flow, providing the flow in each vessel segment and the pressure at each node. Using the same AV as above, we 
obtain the perfusion coefficient via 

𝛽𝑖,𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑞𝑖,𝑘(𝐱)
|𝑝𝑖(𝐱)−𝑝𝑘(𝐱)|

if |𝑝𝑖(𝐱) − 𝑝𝑘(𝐱)| ≠ 0,

0 else,
(27)

where 𝑞𝑖,𝑘(𝐱) is the bulk-volume-average for the intercompartmental flow rate density and can be obtained by division with the 
volume of the AV 

𝑞𝑖,𝑘(𝐱) =
1

𝑉AV

∑

𝑎∈I𝑖,𝑘(𝐱)
𝑄̂𝑎, (28)

where 𝑝𝑖(𝐱) is the real-volume-average of the pressure in the compartment 𝑖. For straight vessel segments with constant diameter, 
𝑝𝑖 can generally be determined by 

𝑝𝑖(𝐱) =
∑

𝑎∈K𝑖(𝐱) 𝑝𝑎𝑉𝑎
∑

𝑎∈K𝑖(𝐱) 𝑉𝑎
, (29)

where 𝑉𝑎 = 𝜋𝑑2𝑎 𝑙𝑎∕4 is the volume of the vessel 𝑎, and 𝑝𝑎 represents the average pressure within the vessel. Since the pressure in the 
vessel segment varies linearly according to Poiseuille’s flow, the average pressure can be determined simply as 𝑝𝑎 =

(

𝑝𝑢 + 𝑝𝑣
)

∕2 from 
the known pressures 𝑝𝑢 and 𝑝𝑣 at the proximal and distal node, respectively. We note that we consider all vessel segments whose 
end nodes are within the AV of the spatial point 𝐱 in their entire length, even if the starting point of the vessel segments lies outside 
this volume. For computing the perfusion coefficients coupling the lowest hierarchy of the vascular trees with the microcirculation 
we use the constant and prescribed reference pressure 𝑝 = 𝑝 − 𝛥𝑝.
9
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Remark 1.  The case |𝑝𝑖(𝐱) − 𝑝𝑘(𝐱)| = 0 in (27) is not relevant for a hierarchically structured network as the pressure decreases 
continuously from the root segment to the terminal nodes within the supplying tree, as well as from the terminal nodes back to the 
root segment within the draining tree.

3.2.3. Compartmentalization strategy
Homogenization relies on the separation of scales, see e.g. Hill (1963), Hornung (2012) and Fish (2013). Scale separation 

cannot be guaranteed for all vessels of the vascular tree structure. We assume that vessel segments with radii below or equal to 
an appropriate threshold of 𝑟𝑡ℎ𝑟𝑒𝑠ℎ are suitable for homogenization. Therefore, we categorize the vessels 𝑎 ∈ A of the vascular tree 
T(V,A) in two groups: the lower hierarchies A𝑙𝑜𝑤𝑒𝑟, suitable for homogenization, and the upper hierarchies A𝑢𝑝𝑝𝑒𝑟, unsuitable for 
homogenization and which therefore must remain as a network of resolved vessels. We define

A𝑢𝑝𝑝𝑒𝑟 = {𝑎 ∈ A ∶ 𝑟𝑎 > 𝑟𝑡ℎ𝑟𝑒𝑠ℎ}, A𝑢𝑝𝑝𝑒𝑟 ⊆ A, (30)

A𝑙𝑜𝑤𝑒𝑟 = {𝑎 ∈ A ∶ 𝑟𝑎 ≤ 𝑟𝑡ℎ𝑟𝑒𝑠ℎ}, A𝑙𝑜𝑤𝑒𝑟 ⊆ A, (31)

where we can also define the respective subsets of nodes
V𝑢𝑝𝑝𝑒𝑟 = {𝑢, 𝑣 ∈ 𝑎 = 𝑢𝑣 ∶ 𝑎 ∈ A𝑢𝑝𝑝𝑒𝑟}, V𝑢𝑝𝑝𝑒𝑟 ⊆ V, (32)

V𝑙𝑜𝑤𝑒𝑟 = {𝑢, 𝑣 ∈ 𝑎 = 𝑢𝑣 ∶ 𝑎 ∈ A𝑙𝑜𝑤𝑒𝑟}, V𝑙𝑜𝑤𝑒𝑟 ⊆ V. (33)

With that, we introduce the sets
V𝑐𝑜𝑛𝑛 = V𝑢𝑝𝑝𝑒𝑟 ∩ V𝑙𝑜𝑤𝑒𝑟, (34)

A𝑐𝑜𝑛𝑛 = {𝑎 = 𝑢𝑣 ∈ Alower ∶ 𝑢 ∈ V𝑐𝑜𝑛𝑛}, (35)

where V𝑐𝑜𝑛𝑛 denotes the set of nodes connecting the upper with the lower hierarchies and A𝑐𝑜𝑛𝑛 denotes the set of vessels of the 
lower hierarchies with proximal node in V𝑐𝑜𝑛𝑛.

Note that A𝑙𝑜𝑤𝑒𝑟 and V𝑙𝑜𝑤𝑒𝑟 can be further divided into several compartments. In the scope of the present study, we will focus 
on the following simple compartmentalization strategy, illustrated in Fig.  6 for the model problem of the circular domain: One 
compartment for each of the lower hierarchies of the respective vascular tree (compartment supply and compartment drainage) and 
the microcirculatory compartment: labeled supply, micro and drain.

Due to the symmetry of the perfusion coefficient and the absence of intercompartmental flow between compartment supply 
and drainage, i.e. 𝛽1,3 = 0, two perfusion coefficients remain and we write 𝛽1,2 = 𝛽supply and 𝛽2,3 = 𝛽drain. The permeability tensors 
of compartments supply and drainage as well as the perfusion coefficients 𝛽supply and 𝛽drain are determined using the averaging 
procedure described in Section 3.2.2.

For the microcirculation, we use the isotropic permeability 𝐾micro. The compartment microcirculation of our model and its 
permeability represents the resistance of the sinusoid network at the microscale, see the illustration in Fig.  1. It cannot represent 
the flow patterns in the lobular structures at the mesoscale, as for instance the model in Ricken and Bluhm (2010). In this sense, 
our model can be interpreted as the averaged flow redistribution across the microcirculation, which occurs through the network of 
the smallest-scale venules and arterioles.

The respective resolved vascular tree structure (upper hierarchies) and the lower hierarchy compartments can be connected by 
deriving suitable inflow and outflow conditions at the connecting nodes V𝑐𝑜𝑛𝑛. This can be achieved via suitably estimated source 
and sink terms 𝜃in and 𝜃out in the continuity Eq. (22b) (Ebrahem et al., 2024). For the inflow into compartment supply, we compute 
for each node 𝑢 ∈ V𝑐𝑜𝑛𝑛 the net flow 𝑄̂𝑢,in that enters from the resolved part of the supplying tree into compartment supply: 

𝑄̂𝑢,in =
∑

𝑎=𝑢𝑣
𝑎∈A𝑐𝑜𝑛𝑛

𝑄̂𝑎 . (36)

𝜃in(𝐱) =
∑

𝑢∈V𝑐𝑜𝑛𝑛

𝑄̂𝑢,in

(2𝜋𝜎2)
𝑑
2

exp

(

−1
2

‖

‖

𝐱 − 𝐱𝑢‖‖
2

𝜎2

)

, (37)

where we spatially distribute the net flow 𝑄̂𝑢,in at each node 𝑢 ∈ V𝑐𝑜𝑛𝑛 in a symmetric way in the form of a weighted multivariate 
Gaussian distribution (Ebrahem et al., 2024). We note that 𝑑 = dim(𝛺) is the spatial dimension of the problem and 𝜎2 is the variance 
of the radially symmetric distribution that controls the effective spread of the source distribution. In the sense of homogenization, 
we choose a sufficiently small variance with respect to the radius of the AV such that the distributed inflow 𝑄̂𝑢,in from the supplying 
vascular tree lies well within the range of the AV.

Remark 2.  Due to mass conservation, the following relation should hold: 

∫𝛺
𝜃in(𝐱) d𝑉 = 𝑄̂perf , (38)

where 𝑄̂perf is the inflow at the root of the supplying vascular tree. Due to the Gaussian distribution, which has unbounded support, 
this relation will in general not be exactly satisfied. In this paper, we assume that the corresponding mass error is sufficiently small 
for our application. As an alternative, one could also scale the Gaussian distribution so that its integration over the finite domain 
𝛺 yields one.
10
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Fig. 6. Compartmentalization of vascular tree structure.

For the outflow, a pressure-dependent sink term 𝜃out is imposed in the compartment drainage. Similar to the intercompartmental 
mass exchange, 𝜃out is introduced as a pressure-dependent outflow 

𝜃out = −𝛽out (𝑝drain − 𝑝out ) in 𝛺outf low, (39)

where 𝛺outf low ⊆ 𝛺 with 𝛺outf low ≠ ∅ denotes the region of outflow. The outflow perfusion coefficient 𝛽out is determined similarly 
to the intercompartmental perfusion coefficient using (27). It relates the outflow 𝜃out to the pressure difference between 𝑝drain and 
a prescribed outflow pressure 𝑝out . The reference pressure is obtained by linearly interpolating the pressure at nodes shared by the 
upper and lower hierarchies.

Finally, the system of Eqs. (24) for our compartmentalization strategy reads 

−∇ ⋅ (𝐊supply∇𝑝supply) + 𝑞supply = 𝜃in in 𝛺, (40a)

−∇ ⋅ (𝐊micro∇𝑝micro) + 𝑞micro = 0 in 𝛺, (40b)

−∇ ⋅ (𝐊drain∇𝑝drain) + 𝑞drain = 𝜃out in 𝛺, (40c)

with the intercompartmental flow rate densities 

𝑞supply = 𝛽supply(𝑝supply − 𝑝micro), (41a)

𝑞micro = 𝛽supply(𝑝micro − 𝑝supply) + 𝛽drain(𝑝micro − 𝑝drain), (41b)

𝑞drain = 𝛽drain(𝑝drain − 𝑝micro). (41c)

3.2.4. Averaging volume size and vessel radius threshold
On the one hand, the AV size must be chosen sufficiently large to ensure that scale separation holds and homogenization can be 

applied. On the other hand, the AV size must not be too large such that macroscale variations in the material parameters are not 
lost by averaging. Homogenization therefore requires a sufficiently large depth of the tree structure.

In this paper, the characteristic length of the macro-scale (e.g., the smallest liver diameter), the characteristic length of the AV 
(in terms of its radius), and the radii of the largest fine-scale vessels to be homogenized (specified via the vessel radius threshold 
𝑟𝑡ℎ𝑟𝑒𝑠ℎ) are chosen at least one order of magnitude apart. We emphasize that the chosen AV size and separation threshold 𝑟𝑡ℎ𝑟𝑒𝑠ℎ do 
not satisfy the classical requirements for scale separation in homogenization.
11
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Fig. 7. Perfusion coefficient 𝛽supply [mm s kg−1] for coupling the compartments supply and microcirculation.

In the scope of the current study, however, the separation by one order of magnitude for both is deemed acceptable to achieve 
a computationally feasible model. We carried out sensitivity studies for different AV sizes, reported in (Hohl et al., 2024), which 
confirm the validity of these choices.

3.3. Prototypical model problem in 2D

We further illustrate the concepts of our multi-compartment perfusion model via the model problem of a 2D circular disk with 
a radius of 10 mm. We start by discretizing the circular domain into a mesh of 45,955 standard six-noded triangular elements 
with quadratic basis functions. We use the supplying and draining tree structures illustrated by Fig.  4 and Table  1 and apply our 
compartmentalization strategy illustrated in Fig.  6. To this end, we assign a circular AV to each mesh element, located at the center. 
The resulting permeability tensors and perfusion coefficients from homogenization are assigned to the corresponding element, where 
it is assumed constant in that element. Following our strategy to ensure scale separation of at least one order of magnuítude, the 
AV radius is set to 1 mm, and the maximum radius of the vessels to be homogenized is chosen to be 0.1 mm, hence 𝑟𝑡ℎ𝑟𝑒𝑠ℎ = 0.1 mm.

We plot the perfusion coefficient 𝛽supply component in Fig.  7. We can observe in Fig.  7(a) that for an AV radius of 1 mm, geometry 
and topology of the resolved larger vessels is reflected in the material parameters of the supply and drainage compartments. This 
result is plausible, as the presence of a (resolved) larger vessels implies the absence of smaller vessels (to be homogenized), which 
directly leads to a decrease in the corresponding permeability tensor and perfusion coefficient. In our case, we would like to maintain 
this mechanism to (a) implicitly represent the flow obstacle due to the resolved larger vessels in the homogenized compartments, 
and (b) mitigate intercompartmental flow from the compartment supply into the microcirculation and from the microcirculation 
into compartment drainage. Hence, we conclude from Fig.  7(a) that the AV radius size must be appropriately chosen in the sense 
that macroscopic heterogeneities of the material parameters are not smoothed too heavily over the entire domain. An example is 
given in Fig.  7(b), where we apply a larger AV radius of 5 mm. We note that unlike in the current 2D case, blood can flow around 
the obstacles in a 3D liver representation by using the third dimension.

We solve the associated coupled boundary value problems (24) and (25) of the compartmentalized model via the open-
source finite element framework FEniCS (Logg et al., 2012). We use an isotropic and homogeneous permeability 𝐾micro =
1∕180 mm3 s kg−1 (Debbaut et al., 2012, 2014b) in the compartment microcirculation.

The results of the pressure fields for all three compartments are shown in Fig.  8. We observe that the compartments supply 
and drainage exhibit pronounced pressure differences, following the structure of the resolved supplying and draining trees. In the 
compartment microcirculation, we can see an almost uniform pressure field. In particular, the pressure in the compartment supply 
decreases from the root to the terminals. In the compartment drainage, we observe that the pressure decreases from the terminals 
to the root.

Fig.  9 presents the velocity magnitudes across all three compartments. The streamlines indicate that flow consistently moves away 
from upper hierarchy vessels within the compartment supply and towards them within the compartment drainage. The observed 
flow directions agree with the orientations of the vessels in the lower hierarchies of the corresponding vascular tree, as depicted in 
Fig.  4.

In the compartment microcirculation, the velocity magnitudes are three orders of magnitude lower than those observed in the 
compartments supply and drainage. Therefore, a flow redistribution through the compartment microcirculation does not occur. 
This observation is in agreement with our interpretation that the compartment microcirculation represents the flow resistance of 
the microscale sinusoids, but cannot involve significant flow redistribution at the macroscale, as the lobular structure would not 
allow that.
12
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Fig. 8. Solution of the pressure fields 𝑝𝑖 [kg mm−1 s−2] for the model problem of the circular domain.

Fig. 9. Solution of the homogenized velocity magnitude fields 𝑤𝑖 [mm s−1] for the model problem of the circular domain with streamlines indicating the 
directions of flow.
13



Journal of the Mechanics and Physics of Solids 200 (2025) 106113A. Ebrahem et al.
Fig. 10. Solution of the homogenized intercompartmental flow rate densities 𝑞𝑖 [s−1] representing (a) the supply into and (c) the drainage from the compartment 
microcirculation. The difference (b) between supply and drainage shows that the redistribution of fluid within the compartment microcirculation is two orders 
of magnitude smaller and hence negligibly small.

Fig.  10 shows the intercompartmental flow rate densities, computed from (41a), (41b) and (41c). The patterns for supply into 
and drainage from the microcirculation do not show large variations across the domain. The difference between supply and drainage 
confirms that a significant fluid redistribution at the macroscale within the compartment microcirculation does practically not occur, 
as its magnitude is two orders lower than supply and drainage. In other words, the fluid flowing into the microcirculation at a 
particular location also flows out at the same location.

4. A hyperperfusion-driven poroelastic growth model

In this section, we present our model for compensatory liver regrowth driven by hyperperfusion in the microcirculation. To this 
end, we first extend the multi-compartment perfusion model by a poroelastic growth model that is defined solely at the compartment 
microcirculation, but provides a growth map for the resolved vessel trees and the compartments supply and drainage. We then 
describe a flow-dependent evolution equation that connects hyperperfusion to volumetric growth. The growth evolution equation 
and the poroelastic growth model correspond to part B and part C, respectively, of our modeling framework illustrated in Fig.  3.

4.1. Poroelasticity framework

The coupling of tissue deformation and fluid flow can be achieved within the framework of poroelasticity. For a comprehensive 
review, we refer the interested reader to Coussy (2004), Ehlers and Bluhm (2002), De Boer (2005), and particularly for large 
deformation formulations to Ebrahem et al. (2024), Chapelle and Moireau (2014), MacMinn et al. (2016) and Vuong et al. (2015). 
Models to describe growing poroelastic media have also been proposed (Collis et al., 2017; Penta et al., 2014), including tissue 
growth (Ricken and Bluhm, 2010; Ehlers et al., 2009), biomass growth (Sacco et al., 2017) or tumor growth (Xue et al., 2016; 
Ambrosi et al., 2017; Fraldi and Carotenuto, 2018).

4.1.1. Homogenization and porosity
We start by focusing on the liver microcirculation, see Section 2.1 and Fig.  1. In line with our discussion on perfusion in 

Section 3.2, we idealize the microcirculation as a porous material in the sense of a heterogeneous mixture. In our model, it consists 
of two constituents: a skeleton phase that includes all cells, the extracellular matrix and the interstitial fluid, and one perfusion 
phase that represents the blood moving through the sinusoids. In the following, corresponding quantities are indexed by skel and
perf, respectively.

We recall the notion of an averaging volume (AV), discussed in Section 3.2.2. The two-constituent porous material is illustrated 
at the micro- and macroscale in Fig.  11. Following averaging over a representative AV at the microscale, the volume fraction of the 
perfusion phase can be described by the porosity 𝜙 = 𝜙𝑝𝑒𝑟𝑓 . The porosity can be expressed at the macroscale as 

𝜙(𝐱, 𝑡) = 𝑑𝑉 𝑝𝑒𝑟𝑓

𝑑𝑉
(42)

where 𝑑𝑉 𝑝𝑒𝑟𝑓  is the incremental volume of the perfusion phase after homogenization and 𝑑𝑉  is the incremental total volume. In a 
two-phase mixture under the assumption of absent void spaces (full saturation), one can express the volume fraction of the skeleton 
as 𝜙𝑠𝑘𝑒𝑙 = 1 − 𝜙. We note that the corresponding total mass at each point of the macroscale domain is 

𝑑𝑚 = 𝜌𝑑𝑉 (43)
14
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Fig. 11. Kinematics of finite growth of a poroelastic medium.

where 𝜌 = 𝜌𝑝𝑒𝑟𝑓𝜙+ 𝜌𝑠𝑘𝑒𝑙(1 −𝜙) is the total density, and 𝜌𝑝𝑒𝑟𝑓  and 𝜌𝑠𝑘𝑒𝑙 are the specific densities of the perfusing blood and the tissue 
skeleton, respectively. We recall that 𝜌𝑝𝑒𝑟𝑓  is constant based on our incompressibility assumption for blood.

4.1.2. Kinematics of growth
Each of the two constituents of the porous material simultaneously occupies a common spatial region. We assume that the 

Lagrangian configuration of the constituents coincide, allowing us to work with a single Lagrangian description. Accordingly, we 
introduce the deformation map to describe the spatial position of a particle, illustrated in Fig.  11: 

𝐱 = 𝜒(𝐗, 𝑡), (44)

where 𝐗 ∈ 𝛺0 is the Lagrangian position of a particle of the liver microcirculation, 𝐱 ∈ 𝛺 denotes the spatial position, and 𝑡 describes 
the time. Here, 𝛺0 and 𝛺 refer to the reference and current domain of the porous material, respectively.

The displacement 𝐮 of the porous material can be described by 𝐮 = 𝐱−𝐗. Accordingly, the standard kinematic quantities can be 
introduced:

𝐅 = 𝐈 + ∇𝐮 (45)

𝐂 = 𝐅𝑇𝐅, (46)

𝐄 = 1
2
(𝐂 − 𝐈), (47)

with 𝐈 being the identity tensor, 𝐅 the deformation gradient, 𝐂 the right Cauchy–Green tensor, and 𝐄 the Green–Lagrange strain 
tensor. The determinant of the deformation gradient associated with volumetric deformation is denoted as 𝐽 = det 𝐅.

To incorporate growth into the framework, the deformation map is decomposed into two components, illustrated in Fig.  11. A 
material point is first mapped into an intermediate, incompatible growth configuration 𝛺𝑔 . This state is considered stress-free, and 
only mass generation occurs between 𝛺0 and 𝛺𝑔 . To ensure compatibility of the domain, elastic deformations are then applied to 
the intermediate configuration (Rodriguez et al., 1994). The split of the deformation map into two consecutive mappings leads to 
a multiplicative decomposition of the deformation gradient 

𝐅 = 𝐅𝑒𝐅𝑔 , (48)

into a purely elastic part 𝐅𝑒 and a growth deformation gradient 𝐅𝑔 (Rodriguez et al., 1994), analogous to the decomposition of the 
deformation gradient in elastoplasticity (Lee, 1969). Accordingly, we introduce the elastic part of the right Cauchy–Green strain 
15
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tensor 

𝐂𝑒 = 𝐅𝑇
𝑒 𝐅𝑒. (49)

4.1.3. Quasi-static balance of linear momentum
Liver regeneration is a dynamic and multiscale process that occurs over various scales in space and time. As our growth model is 

formulated at the macroscale, where the time scale consists of days or weeks, we can describe liver growth within this time window 
by a sequence of quasi-static growth processes, within which we can neglect any time-dependent effects.

We then introduce the momentum balance, assuming a quasi-static setting and the absence of body forces, in both the current 
and reference configurations as

∇ ⋅ 𝜎 = 𝟎 in 𝛺, (50)

∇0 ⋅ (𝐅𝐒) = 𝟎 in 𝛺0. (51)

where 𝜎 describes the Cauchy stress tensor and 𝐒 denotes the second Piola–Kirchhoff stress tensor.
In the scope of this work, we consider the contact of the liver with surrounding organs, which we model by nonlinear elastic 

springs at the outer boundary of the liver, as indicated in Fig.  11. The effect of spring elements at the boundary are best included 
variationally in the weak formulation of the balance of linear momentum. For details, we refer the interested reader to Ebrahem 
et al. (2024), Wriggers and Laursen (2006) and the references therein.

To account for the elastic contact on the outer boundary of the liver, we choose the following interaction term 

𝑊𝑐 (𝑢N) = 𝜁𝑢N, (52)

with 𝜁 representing the nonlinear stiffness of the spring element. The contact contribution is applied in the normal direction, where 
𝐍 denotes the outward unit normal vector on the boundary 𝛤𝑁,0, and 𝑢N = 𝐮 ⋅𝐍 is the normal component of the displacement vector. 
We adopt the deformation-dependent stiffness: 

𝜁 (𝑢N) =
2𝛼

1 + exp
(

−2𝑢N
𝑢0

) − 𝛼, (53)

which saturates towards a maximum stiffness value 𝛼 with increasing displacement 𝑢N. The parameter 𝑢0 = 1 mm is a reference 
displacement to non-dimensionalize the exponent.

4.1.4. Mass balance: integration within the multi-compartment flow model
We recall the pressure equation in (24), which we obtained upon substituting Darcy’s law (22a) into the balance of fluid mass 

(22b). Due to coupling with compartments supply and drainage, the mass exchange term in terms of the net flow rate density 𝑞micro
appears, see (40b). We use the pull-back operation ∇ = 𝐅−𝑇∇0 and the identity ∇ ⋅𝐰 𝑑𝛺 = ∇0 ⋅ (𝐽𝐅−1𝐰) 𝑑𝛺0 for the mapping of (24) 
to the reference configuration 𝛺0

− ∇0 ⋅ (𝐊𝑖,0∇0𝑝𝑖) +
𝑁
∑

𝑘=1
𝛽𝑖,𝑘,0(𝑝𝑖 − 𝑝𝑘) = 𝜃𝑖,0 in 𝛺0, 𝑖 = supply, micro, drain (54)

with ∇0 denoting the material gradient and 𝐊𝑖,0, 𝛽𝑖,𝑘,0 = 𝐽𝛽𝑖,𝑘, 𝜃𝑖,0 = 𝐽𝜃𝑖 denoting the permeability tensor, the perfusion coefficient, 
and the source term in the reference configuration, respectively. The pull-back operation for the permeability tensor is defined by 

𝐊𝑖,0 = 𝐽𝐅−1𝐊𝑖𝐅−𝑇 . (55)

For the compartment microcirculation, we directly apply (55) for 𝐾micro,0, as it represents the resistance of the sinusoids, which 
is preserved due to lobular remodeling during growth, see also Section 4.3 below.

For the compartments supply and drainage, we can find simple update relation for the permeability tensors and perfusion 
coefficients based on the assumption that the perfusion properties of the vascular network are maintained during growth. Given the 
deformation field for each quasi-static iteration step, the update formulations are

𝐊𝑖 = 𝐽−1𝐅𝐊𝑖
|

|

|𝑡=0
𝐅𝑇 , 𝑖 = supply, drain (56)

𝛽𝑖,𝑘 = 𝐽−1𝛽𝑖,𝑘
|

|

|𝑡=0
, 𝑖 = supply, drain (57)

where 𝐊𝑖|𝑡=0 and 𝛽𝑖,𝑘|𝑡=0 denote the permeability and perfusion coefficient in the initial state, respectively. Using these relations, we 
avoid the costly recomputation of the model parameters in each iteration step. Inserting (56) into (55) shows that the permeability 
tensor remains constant in the reference configuration, as does the perfusion coefficient.

4.1.5. Constitutive equations
We introduce the Jacobian weighted by the volume fraction of the skeleton phase:
16
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𝐽 𝑠𝑘𝑒𝑙 = 𝐽 (1 − 𝜙), (58)

and utilize the following Helmholtz free energy density: 
𝛹 𝑠𝑘𝑒𝑙(𝐂𝑒, 𝐽

𝑠𝑘𝑒𝑙) = 𝛹ℎ𝑦𝑝(𝐂𝑒) + 𝛹𝑣𝑜𝑙(𝐽 𝑠𝑘𝑒𝑙), (59)

where 𝛹ℎ𝑦𝑝(𝐂𝑒) denotes the hyperelastic potential of the liver skeleton and 𝛹𝑣𝑜𝑙(𝐽 𝑠𝑘𝑒𝑙) accounts for the volume change of the structure 
caused by the fluid pressure (Vuong et al., 2015).

In (59), we choose a hyperelastic material model of Neo-Hookean type for the liver skeleton: 

𝛹ℎ𝑦𝑝(𝐂𝑒) =
1
8
𝜆ln2(𝐼3) +

1
2
𝜇[𝐼1 − 3 − ln(𝐼3)], (60)

where 𝜆 and 𝜇 denote the Lamé parameters and 𝐼1 = tr 𝐂𝑒 and 𝐼3 = det 𝐂𝑒 are invariants of the elastic right Cauchy–Green tensor. 
Additionally, we select 

𝛹𝑣𝑜𝑙(𝐽 𝑠𝑘𝑒𝑙) = 𝜅
(

𝐽 𝑠𝑘𝑒𝑙

1 − 𝜙0
− 1 − ln

(

𝐽 𝑠𝑘𝑒𝑙

1 − 𝜙0

))

, (61)

where 𝜙0 denotes the porosity in the stress-free grown configuration, which in our model is equivalent to the porosity in the reference 
configuration, and 𝜅 = 𝐸∕(3(1 − 2𝜈)) is the bulk modulus of the skeleton (Vuong et al., 2015).

We decompose the Cauchy stress tensor into the effective stress 𝜎′ and a fluid pressure component via: 
𝜎 = 𝜎′ − 𝑝micro𝐈, (62)

where 𝑝micro is the fluid pressure of blood that moves through the sinusoids in the microcirculation. The effective stress 𝜎′ determines 
the deformation of the skeleton. The constitutive relations take the following form (Vuong et al., 2015; Himpel et al., 2005): 

𝐒 = 𝐒′ − 𝐽𝑝micro𝐂−1, (63a)

𝐒′ = 2 𝐅−1
𝑔

𝜕𝛹ℎ𝑦𝑝

𝜕𝐂𝑒
𝐅−𝑇
𝑔 , (63b)

𝑝micro = − 𝜕𝛹𝑣𝑜𝑙

𝜕𝐽 𝑠𝑘𝑒𝑙 , (63c)

where 𝐒′ is associated with the effective stress via 𝜎′ = 𝐽−1𝐅𝐒′𝐅𝑇 . Eq. (63c) relates 𝐽 𝑠𝑘𝑒𝑙 to the fluid pressure 𝑝micro, and consequently 
connects the porosity 𝜙 to 𝑝micro.

We note that these constitutive relations are motivated by macroscopic thermodynamic considerations. For a review of 
poroelasticity from a microscopic perspective and the derivation of constitutive equations by means of a micro-macro approach, 
we refer to Dormieux et al. (2002).

Remark 3.  The mass balance equations of the solid skeleton do not have to be explicitly considered here, since the skeleton 
partial density 𝜌𝑠𝑘𝑒𝑙(1 − 𝜙) does not appear in the linear momentum Eqs. (50) and the fluid mass balance Eqs. (54). Therefore, 
the only unknowns of the model are the pressure fields in the three compartments supply, microcirculation and drainage, and the 
displacement vector field. The final porosity in the grown configuration is not a variable, but can be computed as a postprocessing 
step via (63c) (𝑝micro → 𝐽 𝑠𝑘𝑒𝑙) and (58) (𝐽 𝑠𝑘𝑒𝑙 → 𝜙).

4.2. Evolution equation for hyperperfusion-driven isotropic growth

Growth evolution laws describe how living tissues alter their shape in response to external stimuli. These laws establish a 
relationship between the growth tensor 𝐅𝑔 and mechanical fields, chemical fields, or biological signaling (Ambrosi et al., 2011; 
Goriely, 2017).

4.2.1. Isotropic compensatory growth
Following our exposition in Section 2.2, we recall that hepatocyte proliferation is the central mechanism by which the liver 

regains its mass. Growth factors and cytokines that drive hepatocyte proliferation at the cell level quickly spread within a lobule. 
Additionally, lobular remodeling supports the even distribution of blood flow through the regenerating lobule tissue. Therefore, we 
assume that hepatocytes proliferate uniformly, leading to a consistent increase in liver mass in all directions. One might argue that 
at the microscale, growth might still occur orthotropically, as hepatocyte proliferation might differ along the sinusoid axis in flow 
direction and perpendicular to the sinusoid axis. We can assume, however, that even in this case, liver regrowth can be regarded 
as isotropic from a macroscopic viewpoint, since any potential direction dependence will be averaged out in the homogenization 
process.

We hence consider compensatory volumetric growth to occur isotropically, expressed in the following classical form: 
𝐅𝑔 = 𝜗1∕3 𝐈, (64)

where the growth factor 𝜗 denotes the volumetric change due to growth (Lubarda and Hoger, 2002). It corresponds to the 
determinant of the growth deformation tensor 

𝜗 = det 𝐅 = 𝐽 = 𝑑𝑉 𝑔
(65)
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which denotes the ratio between the volume increase in the intermediate configuration and the initial volume in the reference 
configuration at each point of the macroscale domain. In the context of our quasi-static poroelastic model, we assume that we can 
keep the same porosity when we map each AV from the initial to the intermediate configuration. Hence, we can write for the change 
in mass at the macroscale: 

𝑑𝑚𝑔 = 𝜌𝑑𝑉 𝑔 = 𝑑𝑉 𝑔

𝑑𝑉 0
𝜌𝑑𝑉 0 = 𝜗 𝑑𝑚0. (66)

 We emphasize that in (66), the growth factor is not only applied to the tissue skeleton, but also to the perfusing blood. In the 
context of our quasi-static model, the associated ‘‘growth’’ of the fluid, 𝜗𝜌𝑝𝑒𝑟𝑓𝜙𝑑𝑉 0, represents the added mass of the blood that 
occupies additional sinusoid space. We also refer to the discussion in terms of lobular remodeling in Section 4.3 below.

Following (66), the interpretation of the growth factor 𝜗 in terms of the change in homogenized mass under consistent 
microstructure is straightforward: 

𝜗 = 𝑑𝑚𝑔

𝑑𝑚0
. (67)

4.2.2. Hyperperfusion stimulates regrowth
Following the exposition in Section 2.2, hyperperfusion in the microcirculation is the main stimulus for liver regrowth. We now 

establish a link between compensatory volumetric growth, described through an evolution equation, to (hyper-)perfusion through 
a data-based phenomenological relationship. In this work, we adopt the inflow rate density into the compartment microcirculation, 
𝑞supply given in (41a), as an effective measure of (hyper-)perfusion in the microcirculation. The complex cell-scale mechanisms briefly 
touched upon in Section 2.2 and sketched in Fig.  2 are not explicitly represented in this model, but implicitly incorporated through 
data calibration.

Motivated by existing growth models for other biological tissues (Kuhl, 2014), we adopt the following form of the evolution 
equation for the growth factor 𝜗 that results from the multiplication of a growth scaling factor with a mechanism-specific growth 
criterion: 

𝜗̇(𝐗) =
{

𝑘𝜗(𝜗) 𝛾𝑔(𝑞supply) for 𝛾𝑔(𝑞supply) > 0,
0 for 𝛾𝑔(𝑞supply) ≤ 0.

(68)

which is defined at each point of the macroscale domain. The specific form (68) enables the separation of the dependence on the 
size of the growth factor 𝜗 itself and the mechanism-specific field variable 𝑞supply into two separate variables 𝑘𝜗 and 𝛾𝑔 , which can 
then be considered one at a time.

We begin with the liver-specific growth criterion 𝛾𝑔 . Following our discussion on hyperperfusion-driven growth, we propose the 
following new growth criterion 𝛾𝑔 , 

𝛾𝑔 =
|𝑞supply| − |𝑞equi|

|𝑞equi|
. (69)

which depends on the current homogenized blood flow rate density into the microcirculation (after resection). It is related to the 
homeostatic state 𝑞equi, which we choose as the homogenized blood inflow rate density before resection. The growth criterion thus 
represents the relative increase of the current homogenized blood flow at each macroscale point with respect to the (supposedly 
healthy) homeostatic state before resection. We note that our choice of 𝑞equi automatically accounts for the potential special perfusion 
characteristics represented in a patient-specific simulation model that is set up by including patient-specific data such as the overall 
geometry of the liver or the location of large vessels.

We observe that our growth criterion (69) is designed to mitigate hyperperfusion by driving growth only at the location, where 
a discrepancy between the current and the preferred flow exists. In (68), growth is activated only if the current local flow rate into 
the microcirculation exceeds a physiological equilibrium value.

The growth scaling coefficient 𝑘𝜗 is commonly used to prevent unbounded growth and allow the calibration of a specific growth 
curve. For the growth scaling coefficient, we choose the following form (Lubarda and Hoger, 2002): 

𝑘𝜗(𝜗) = 𝑘+𝜗

[

𝜗+ − 𝜗
𝜗+ − 1

]𝑚+
𝜗
. (70)

It has three well-defined material parameters, which can be adjusted based on experimental data. The parameter 𝜗+ is the limiting 
value of growth. The parameter 𝑘+𝜗  represents the growth speed, which allows calibration of the growth model with respect to time. 
Additionally, the parameter 𝑚+

𝜗  allows the adjustment of the nonlinearity of the growth process.

4.2.3. Calibration based on experimental data
Experimentally determined graphs of liver mass regeneration typically show a rapid initial increase in mass due to the high 

regeneration rate, followed by a slower increase as the resected liver approaches its original mass (Hohmann et al., 2014; Furchtgott 
et al., 2009; Koniaris et al., 2003). We can now fit the parameters of the growth scaling coefficient (70) to match the growth curves 
that are observed in experimental measurements conducted on rats.

Available data refer to growth of a complete liver, and do not feature local growth in a particular region. We therefore assume 
that the local growth process with respect to the AV sizes that we will choose for the simulation scenarios in the following does not 
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Fig. 12. Evolution of the growth factor 𝜗 over time.

differ from the growth process averaged over the complete organ. In addition, during calibration of the growth scaling coefficient, 
we set the growth criterion 𝛾𝑔 = 1. By doing so, we treat 𝛾𝑔 as a growth driver that merely indicates whether growth is activated 
or not, without specifying its intensity in different regions of the liver. This allows us to focus on calibrating the free parameters of 
the growth scaling function (70), so that the overall growth curves produced by the model match the global trends observed in the 
experimental data available.

In the first step, we set the limiting value of growth 𝜗+ = 2.0 for all examples as experimental measurements show that the 
grown lobules can increase to double their original size (Tsomaia et al., 2020). In the next step, we conduct a sensitivity study for 
the remaining two parameters by numerically integrating the evolution Eq. (68) with a simple forward Euler method and a time 
step 𝛥𝑡 = 2 h. In Fig.  12(a), we plot the resulting evolution of the growth factor 𝜗 versus time for different 𝑚+

𝜗  and a fixed 𝑘+𝜗 = 0.01. 
We see that the nonlinearity of the growth process is influenced by the parameter 𝑚+

𝜗 . In Fig.  12(b), we plot the evolution of the 
growth factor for different values of the growth speed 𝑘+𝜗  and a fixed 𝑚+

𝜗 = 1.
To calibrate the growth factor, we use the data reported in Nishiyama et al. (2015) which come from experimental measurements 

conducted on mice. In these experiments, 70% of the liver was surgically removed. The recovery of liver mass over time was 
monitored and the remnant liver weight was measured at different time steps to assess the regeneration process (see Fig.  13(a)).

Next, we use the remnant liver weight (mass data) in Fig.  13(a) to determine the corresponding growth factor 𝜗, which is defined 
in Eq.  (67) and is directly linked to the mass. The determined growth factor (see blue curve in Fig.  13(b)) ranges between 1.0 and 
2.0, where 𝜗 = 1.0 corresponds to the initial mass (30%) and 𝜗 = 2.0 corresponds to the fully regenerated liver mass (100%) due to 
the previously determined limiting value of growth 𝜗+ = 2.0.

Based on these data and the sensitivity study above, we choose the nonlinearity parameter of the growth process to be 𝑚+
𝜗 = 1.0

and the growth speed to be 𝑘+𝜗 = 0.01. In Fig.  13(b), we plot the resulting evolution of the modeled growth factor alongside the 
growth factor derived from the experimental mass data in Nishiyama et al. (2015). We observe a  good agreement for our choice 
of parameters. In addition, we observe that the duration of the growth process of 300 h (12.5 days) also matches the available 
data (Nishiyama et al., 2015; Furchtgott et al., 2009).

4.3. Volumetric growth vs. lobular remodeling

We recall from Section 2.2 that in addition to the restoration of lost mass via hepatocyte proliferation, liver regenera-
tion also involves changes across the hierarchical vasculature (Lorenz et al., 2018; Große-Segerath and Lammert, 2021). The 
compartmentalization of our model illustrated in Fig.  6 allows the following interpretation with respect to lobular remodeling.

For the largest vessels of the resected supplying and draining tree that we keep resolved, we assume that remodeling solely 
involves adaptations in length and position rather than angiogenic changes in their topology. In our model, the vessels remain 
straight cylindrical tubes during growth. Furthermore, we assume that they maintain their supply and drainage activity in the same 
way as before, but scaling up their throughput after resection via a corresponding change in diameter (vasodilation) (Große-Segerath 
and Lammert, 2021). In our model, we therefore update the positions of the nodes of these vessels according to the displacement 
field of the grown tissue represented in the compartment microcirculation, and then adjust the diameter according to the required 
blood flow (Hohl et al., 2024).

In our model, the medium- and smaller-sized vessels in the intrahepatic branches are homogenized into two compartments 
for supply and drainage. In a growing liver, these vessels also undergo angiogenesis and remodeling to connect new tissue areas 
with the existing vascular network, supporting uniform blood distribution within the liver (Michalopoulos, 2007; Große-Segerath 
and Lammert, 2021). In our model, we assume that these reorganization effects are reflected through geometric updates during 
homogenization. We therefore update the material parameters of the homogenized model as defined in Eqs. (56) and (57), using 
the geometry-related quantities 𝐅 and 𝐽 (Hohl et al., 2024).
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Fig. 13. Calibration of the growth factor 𝜗 with mass data reported in Nishiyama et al. (2015).

At the capillary level, the existing network of sinusoids must undergo angiogenesis to ensure efficient metabolic activity of the 
proliferated hepatocytes (Michalopoulos, 2007; Große-Segerath and Lammert, 2021). To this end, new microvessels sprout from 
existing ones to support the increased metabolic demand of the regenerating tissue. These angiogenic processes are dynamic and 
can therefore not be explicitly represented in our quasi-static model. In our approach, we therefore assume that they take place 
between the quasi-static states that we compute, and their effect is therefore available instantly. As a consequence, we assume that 
the resistance of the sinusoid network the regrown liver tissue always corresponds to the same (healthy) tissue and therefore use 
the same permeability in the compartment microcirculation at all times.

4.4. Prototypical model problem in 2D

We utilize the same two-dimensional test problem of a circular disk with planar trees used in Section 3.3 to verify the 
basic behavior of the multi-compartment poroelastic growth model. We only add the poroelastic growth model presented in 
4.1 and 4.2, while the rest of the setup (perfusion-related parameters, discretization, supplying and draining tree structures, 
compartmentalization and homogenization procedure) remains identical to what was shown in Section 3.3. We adopt Young’s 
modulus 𝐸 = 5 kg mm−1 s−2 and Poisson’s ratio 𝜈 = 0.35 reported for the liver in Rezania et al. (2020). For the contact boundary 
condition on the outer surface of the circular disk, we require a parameter in the nonlinear stiffness relation (53), which we choose 
as 𝛼 = 5 × 10−3. This choice is based on the elastic properties of the surrounding organs of the liver (Brock et al., 2005).

For simplicity, we set the equilibrium flow rate density 𝑞equi to the supply flow rate 𝑞supply, plotted in Fig.  10. To induce growth 
within the model, we introduce a perturbation by doubling the flow rate through the supplying vascular tree. This increase in flow 
rate serves as a stimulus, pushing the system out of its equilibrium state and mimicking tissue growth driven by hyperperfusion.

Fig.  14 illustrates the resulting growth of the circular disk. We observe that the disk grows nearly uniformly, with no noticeable 
areas exhibiting disproportionate growth. This aligns with our expectation as the full circular disk receives a relatively uniform 
blood supply from the vascular network. We also observe that the fully regrown circular disk has doubled in size after 300 h, such 
that double the flow rate through the supplying vascular tree leads to a flow rate density close to our choice of 𝑞equi.

5. Towards simulation based assessment of liver regrowth

We now utilize our modeling framework to computationally investigate liver growth after surgical resection. We first describe 
the patient-specific liver model used in this study, along with the associated vascular geometry. We then focus on simulations of 
liver perfusion, which we need as an input to our growth evolution model. Finally, we focus on computationally analyzing liver 
regrowth as represented by our model.

5.1. Patient-specific geometry and synthetic vascularization

Our patient-specific liver geometry is obtained from CT scans provided in Bilic et al. (2023). We make use of the open source 
software package 3D Slicer1 and the free software Autodesk Meshmixer2 to segment the liver. Fig.  15(a) shows a 2D slice of a CT 
scan, which has a resolution of 0.977 × 0.977 mm within each image, with a spacing of 2.5 mm between the slices. The segmentation 
mask of the liver domain is illustrated in Fig.  15(b).

1 https://www.slicer.org/.
2 https://meshmixer.com/.
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Fig. 14. Homogenized volumetric flow rate 𝑞supply [s−1] after doubling the inflow rate through the vascular tree. 𝐴𝐶 denotes the area of the disk.

Fig. 15. Abdominal CT scan with a resolution of 0.977 𝑥 0.977 mm and a slice thickness of 2.5 mm.

Table 2
Parameters for synthetic tree generation of the full liver example.
 𝑁vessel 𝑁term 𝛥𝑝 [ kg

mms ] 𝑄̂perf [ mm3

s ] 𝑚𝑏 [ μW3

mm3 ] 𝜂 [ kg
mms ]  

 Hepatic artery 1,781,564 890,782 1.176 4,000 0.6 3.6 × 10−6 
 Portal vein 1,767,920 883,960 0.217 16,000 0.6 3.6 × 10−6 
 Hepatic vein 1,756,428 878,214 −0.045 20,000 0.6 3.6 × 10−6 

We then generate the vasculature of the liver synthetically as described in Section 3.1, using the patient-specific liver domain as 
a boundary and locations of the patient-specific root locations. Fig.  16 shows the patient-specific liver domain with the synthetically 
generated hepatic artery, portal vein and hepatic vein. The underlying parameters for synthetic tree generation are summarized in 
Table  2.

5.2. Model results for liver (hyper-)perfusion

We first focus on simulating liver perfusion in the unresected liver, assuming a healthy state. We divide the synthetic vascular 
network generated in the previous section into spatially co-existing compartments. To this end, vessels with a radius exceeding 
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Fig. 16. Patient-specific liver domain with vascular trees: hepatic artery (red), portal vein (purple) and hepatic vein (blue). Only 113,000 vessels per tree are 
visualized. For a comprehensive visual impression of the synthetic tree structure, we refer to the supplementary video, which is part of this article.

Fig. 17. Compartmentalization of vascular trees for the liver.

𝑟𝑡ℎ𝑟𝑒𝑠ℎ = 0.2 mm belong to the upper hierarchies that are kept resolved, while those with a radius of 𝑟𝑡ℎ𝑟𝑒𝑠ℎ = 0.2 mm or less are 
assigned to the lower hierarchies. The compartmentalization of the liver perfusion trees is illustrated in Fig.  17. We emphasize again 
that for the homogenization process we lump the portal vein and the hepatic artery into one supplying tree, as their trees run largely 
in parallel. We then generate a finite element mesh illustrated in Fig.  18(a) that consists of 870,626 tetrahedral elements. For the 
computation of the homogenized material parameters, we choose a radius of the spherical AV of 5 mm.

Given a characteristic length of the complete liver of approx. 12.5 cm, an AV radius of 5 mm, and a maximum radius 
𝑟𝑡ℎ𝑟𝑒𝑠ℎ = 0.2 mm of the vessels to be homogenized, we obtain a scale separation well above one order of magnitude. We note 
that choosing a larger value of 𝑟𝑡ℎ𝑟𝑒𝑠ℎ (for instance to 2 mm) requires in turn an AV size of at least 2 cm, making scale separation 
questionable. Conversely, refining 𝑟𝑡ℎ𝑟𝑒𝑠ℎ (for instance to 0.02 mm) falls below the smallest arterioles and venules represented in 
our synthetic tree. Given these limitations in both directions, the AV size and 𝑟𝑡ℎ𝑟𝑒𝑠ℎ can realistically be varied by a factor of two or 
three, but this has only a limited impact on the model’s outcome.
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Fig. 18. Finite element meshes.

Fig. 19. Magnitude of the homogenized velocity fields ‖𝐰𝑖‖ [mm s−1] of the full liver before resection.

5.2.1. Full liver before resection
We first consider the perfusion results before resection. In Fig.  19, we show the corresponding magnitudes of the homogenized 

velocities. In compartments supply and drainage, we can observe a larger flow along vessel segments of both supplying and draining 
trees. In the compartment microcirculation, we observe velocity magnitudes that are at three orders of magnitude lower than those 
in the compartments supply and drainage. This confirms that the compartment microcirculation connects the compartments supply 
and drainage by representing the resistance of the sinusoids, and does not redistribute flow across the macroscale domain.

Fig.  20 shows the homogenized volumetric flow rate density 𝑞supply of the full liver. We can observe an almost uniform blood 
supply to the liver which is to be expected in the healthy state.

5.2.2. Liver after partial resection
Partial anatomical resections involve removing portions of the liver along anatomical boundaries, e.g. to remove a liver tumor. 

For planning a partial resection, surgeons often follow the Couinaud classification, which partitions the liver into eight functionally 
independent segments. Each segment is supplied by its own larger branch of the supplying tree, which splits into smaller vessels 
within the segment, and is connected to a larger branch of the draining tree. This enables segmental resections without affecting 
other segments (Vibert et al., 2006). Examples include left hepatectomy, right hepatectomy, and segmental resections. In addition to 
removing the pathology, selecting corresponding cutting planes is also influenced by the objective of preserving as much liver tissue 
as possible. Surgeons have to carefully balance these two conflicting objectives to ensure sufficient liver function while achieving 
the best possible outcome in terms of removing the pathology (Christ et al., 2017).

In this context, assessing changes in perfusion, flow redistribution and the mechanical response of the resected liver has clinical 
relevance (Michalopoulos, 2007). An insufficient blood supply can result in ischemia, where the tissue does not receive enough 
oxygen and nutrients. Prolonged ischemia can cause tissue damage and death. Therefore, the liver’s regenerative capacity can be 
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Fig. 20. Homogenized volumetric flow rate density 𝑞supply [s−1] of the full liver before resection.

Table 3
Vascular tree data for the resected liver.
 𝑁vessel 𝑁term 𝑁orphan 
 Hepatic artery 1,384,866 692,058 12,245 
 Portal vein 1,355,034 677,256 30,817 
 Hepatic vein 1,361,280 680,257 16,097 

impaired if a significant part of the tissue does not receive prolonged sufficient blood supply. The parts of the associated isolated 
vasculature, which are cut off and no longer supplied with blood, are often denoted as orphans.

We now consider a scenario where a tumor is located in the left lateral section of the liver as illustrated in Fig.  21. The partial 
resection required to remove the tumor-affected region involves a standard surgical cut that removes liver segments two and three 
according to the Couinaud classification. The cut also implies cutting the vasculature. We illustrate the ‘‘active’’ vessels that are still 
connected to the root of the corresponding tree. All orphan vessels that lost this connection are highlighted in yellow. The number 
of remaining active vessel segments, terminal nodes and orphan vessel segments are tabulated in Table  3.

Vessels that are cut are sealed during surgery to prevent blood loss. In our simulations, we thus assume that blood flow through 
any cut segment does not occur. The blood flow associated with cut segments is then redistributed evenly across the remaining 
portion of the active tree model, in line with our assumptions discussed in Section 4.3. We note that after partial resection, the 
cardiovascular system tries to reduce the overall blood flow rate in the liver by reducing the flow in the hepatic artery. In the scope 
of the present study, this effect is not considered. The resected liver domain is discretized by a finite element mesh of 674,389 
tetrahedral elements, which is illustrated in Fig.  18(b). The homogenization procedure described above is repeated based on the cut 
synthetic vasculature and the perfusion simulation is re-run.

Fig.  22(a) plots the resulting homogenized volumetric flow rate density of the resected liver before regrowth. On the one hand, 
we can clearly see a much higher overall flow rate as compared to the results for the full liver in Fig.  20. The increased flow rate 
density represents the state of hyperperfusion, as in our model, the same amount of blood needs to pass through a smaller domain 
after partial liver resection. On the other hand, we see a significantly lower flow rate density along the cut plane. This is due to the 
existence of orphans in this area that do not receive blood supply. In Fig.  21, we can see that in the corresponding region, there are 
no active vessels of the portal vein.
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Fig. 21. Synthetic vasculature after resection (inferior view). Orphan vessels are highlighted in yellow.

5.3. Model results for liver regrowth

In the next step, we consider the modeling of liver regrowth, where our focus is on how well our modeling framework represents 
characteristic phenomena associated with liver regeneration at the organ scale. Our growth criterion (69) requires a measure for 
the homeostatic perfusion state, which we have chosen to express via the homogenized flow rate density 𝑞equi of the full liver before 
resection. Otherwise, we use the same parameters as specified in Section 4.4. We integrate with respect to time using a standard 
explicit forward Euler method with a time step of 𝛥𝑡 = 15 h, up to a final time of t = 300 h after resection.

Fig.  22 compares the resected liver at the beginning and after 300 h of the simulated regeneration process. We also report 
the associated volume 𝑉𝐿 of the current liver domain. Referring these volumes to the volume of the full liver before resection 
(𝑉𝐿 = 2, 403, 749 mm3), we see that directly after resection, the liver is reduced to 79.8% of its original volume, but after 300 h has 
recovered 98.6% of its original volume.

Additionally, we plot the homogenized blood flow rate density of the regrown state after 300 h in Fig.  22(b). Comparing these 
results to the results of the full liver in Fig.  20, we observe that the flow rate density reduces over time to the level of the homeostatic 
state in the unresected full liver. On the one hand, the intensity of the flow rate decreases in areas that initially experienced the 
highest increase. On the other hand, the flow rate does not recover in the area, where the flow rate dropped due to orphans.

5.4. Flow rate variability across the liver domain

We now assess the effect of partial liver resection on the homogenized flow rate density 𝑞supply into the compartment 
microcirculation, which we see as a suitable measure of the quality of perfusion at the meso- and microscale. To this end, we 
construct histograms to compare the variability and distribution of the homogenized flow rate 𝑞supply across the liver domain before 
and after partial resection.
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Fig. 22. Homogenized volumetric flow rate density 𝑞supply [s−1] plotted on the deformed configuration at the beginning and after 300 h of the regrowth process. 
𝑉𝐿 denotes the current volume of the liver domain.

Fig. 23. Variability of the homogenized flow rate density 𝑞supply [s−1] in the full and resected liver. The left pictures zooms in to show the left-hand tails.

For constructing histograms for the full liver and the resected liver, we require sample data at points that are covering each 
domain sufficiently close to an equal distribution. For simplicity, we collect the flow rate density at the element midpoints of the 
two tetrahedral meshes shown in Figs.  18(a) and 18(b) and weight the frequency by the element volume. To mitigate the effect of 
a potential boundary layer, we leave away all boundary elements. For both cases, we group the values in the same 150 flow rate 
bins, which we found suitable to clearly visualize the underlying distribution patterns. To eliminate the effect of the difference in 
the number of elements in the two cases, the histograms report the relative frequency in each bin.

5.4.1. Before and after partial resection
Fig.  23 compares the change in variability and distribution of the homogenized volumetric flow rate density 𝑞supply, when we 

move from the full liver (in blue) to the resected liver without regrowth (in orange). Table  4 reports the corresponding maximum 
values, the mean, and the standard deviation. We observe a distinct increase in the mean flow rate density in the case of the resected 
liver, demonstrating the state of hyperperfusion compared to the normal homeostatic conditions in the case of the full liver. We can 
observe that there is also a significant rise in the variability and dispersion of the blood supply 𝑞supply in the case of the resected 
liver. This reflects the state of hyperperfusion in most regions, but also the effect of orphans in the vasculature that practically lead 
to the inhibition of perfusion.
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Fig. 24. Variability of the homogenized flow rate density 𝑞supply [s−1] at the beginning of the regrowth process and after 300 h. As a homeostatic reference, we 
include the results for the liver before resection.

Table 4
Variability measures for the homogenized volumetric flow rate 𝑞supply at different liver states.
 max. [s−1] mean [s−1] stand. dev. [s−1] 
 Full liver (homeostatic reference) 14.6 ⋅ 10−3 7.8 ⋅ 10−3 2.0 ⋅ 10−3  
 Resected liver at t = 0 21.5 ⋅ 10−3 10.0 ⋅ 10−3 2.8 ⋅ 10−3  
 Regrown liver at t = 45 h 18.9 ⋅ 10−3 8.9 ⋅ 10−3 2.5 ⋅ 10−3  
 Regrown liver at t = 150 h 16.5 ⋅ 10−3 8.3 ⋅ 10−3 2.3 ⋅ 10−3  
 Regrown liver at t = 300 h 15.1 ⋅ 10−3 8.0 ⋅ 10−3 2.2 ⋅ 10−3  

These results demonstrate that our model is able to represent hyperperfusion as a consequence of partial resection. They also 
provide a clear indication how the surgical procedure disrupts normal perfusion patterns, leading to increased flow variability.

5.4.2. During the regrowth process
The histograms plotted in Fig.  24 compare the variability of the homogenized volumetric flow rate 𝑞supply in the resected liver at 

the beginning of the regrowth process and after 300 h (in orange). As the homeostatic reference, we also show again the variability 
in the full unresected liver (in blue). For some intermediate states computed, Table  4 also reports the maximum values, the mean 
and the standard deviation at the beginning and after 45, 150 and 300 h.

We observe that the mean and the standard deviation of the flow rate density reduces during regeneration. When we compare 
the histogram of the fully regrown state after 300 h to the initial state of the full liver, we observe that the regrown liver exhibits 
a flow rate variability and distribution close to the initial homeostatic state. We also see that the lower end tail of the flow rate 
towards zero flow remains and does not recover. The slightly increased mean and the slight shift towards larger flow rates in the 
histogram are likely due to the presence of regions with inhibited perfusion, which the remaining regions need to compensate for.

In general, our results demonstrate again that our model is able to account for the reduction of hyperperfusion towards a 
homeostatic perfusion state in the regrown liver.

5.4.3. Local hyperperfusion vs. local hypoperfusion
The results reported in the histograms above suggest a pronounced variability in the local perfusion state across the growing liver 

domain. In particular, they indicate that after resection, we do not only encounter hyperperfusion, but also a reduction of blood 
flow (hypoperfusion) in some regions of the compartment microcirculation. We would like to further investigate this variation 
in local perfusion behavior in our liver model, as it underscores the need for a localized growth criterion. Capturing variations in 
perfusion during regrowth is likely a key component for potential applications in simulation-based diagnosis and prediction, e.g., for 
hypoperfusion-driven ischemia.

In Fig.  25, we first plot the minimum and maximum values, the mean and the standard deviation of the local growth factor, 
monitored at the nodal points of the finite element mesh during regrowth. We observe that on average, each volume element of the 
resected liver eventually increases its volume by a factor of approx. 1.24, which agrees well with the global volume increase from 
79.8% to 98.6% of the original volume of the unresected liver. The growth factor, however, ranges from 1.48 (twice the average 
growth factor) to 1.0 (no growth at all).

We then focus on a specific region shown in Fig.  26, where the simulated homogenized flow rate density indicates hyperperfusion. 
To quantify local hyperperfusion, we restrict our selection of nodal points to this region and plot the local variability of the 
homogenized flow rate density 𝑞supply during regrowth in Fig.  26.

We observe that on average, the flow rate density decreases from around 0.01 to 0.008 s−1, which corresponds inversely to the 
average growth factor of 1.24 reported in Fig.  25 for the complete liver. We also observe a significant variability in the flow rate 
density in this region, with the maximum value at 𝑡 = 0 as large as 0.017 s−1 and the minimum value as low as 0.0049 s−1. The 
latter can be attributed to the presence of very large vessels in the synthetic tree, which occupy a certain space with no smaller 
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Fig. 25. Variability of the growth factor 𝜗 across the growing liver domain over time.

Fig. 26. Local hyperperfusion: variability of the homogenized volumetric flow rate 𝑞supply [s−1] across the selected region (red box) over time.

vessels to be homogenized. Hence, there are always regions with low permeability, effectively modeling the flow obstruction caused 
by these large vessels.

We observe that all curves – average, minimum and maximum – still exhibit the same relative decrease in flow rate density over 
time. It is straightforward to infer from our definitions of the evolution Eq. (68) and the growth criterion (69) that at the locations 
of low flow rate density, the homeostatic reference 𝑞equi in (69), taken from the full unresected liver, must have also been low - 
for instance, due to the existence of a larger resolved vessel at that location. We can therefore conclude that Fig.  26, including the 
curve of the minimum value, does not reflect a state of hypoperfusion.

We then focus on a specific region at the cut plane shown in Fig.  27. We repeat the same procedure and plot the variability of 
the local homogenized flow rate density during regrowth in Fig.  27. We now observe that only the curve for the maximum value 
shows a slight decrease over time, while the average and minimum curves remain constant. We therefore infer from (68) and (69) 
that the homeostatic reference 𝑞equi in the unresected liver must have been larger in this region, such that an increase in the growth 
factor (68) is excluded. We can therefore conclude that Fig.  27 does reflect a state of hypoperfusion, which indicates the existence 
of orphans in the supplying tree. The plot of the active vasculature of the portal vein in Fig.  21 confirms the existence of orphans 
in this region.

6. Summary and conclusions

In this paper, we presented a novel framework for modeling liver regrowth on the organ scale. It combines the following three 
main model components:
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Fig. 27. Local hypoperfusion: variability of the homogenized volumetric flow rate 𝑞supply [s−1] across the selected region (red box) over time.

(A) a multiscale perfusion model that combines synthetic vascular tree generation with a multi-compartment homogenized flow 
model, including a homogenization procedure to obtain the effective permeabilities and intercompartmental perfusion coeffi-
cients from the lower hierarchies of the synthetic tree structure.

(B) a poroelastic finite growth model that is defined in the compartment microcirculation, but acts also on the other compartments 
and the synthetic vascular tree structure by transfer of the resulting finite kinematics.

(C) an evolution equation for the local volumetric growth factor, driven by the homogenized flow rate density into the compartment 
microcirculation that we identified as a measure for local hyperperfusion.

Our framework is based on a series of modeling assumptions and interpretations. The most important are:

(1) We assumed that the hierarchical vascular structures of the liver can be approximated by straight vessel segments, where blood 
is a Newtonian fluid and Poiseuille’s law holds. We then synthesized the vascular tree structure of the liver via non-intersecting 
directed graphs that minimize a combination of the metabolic demand and the hydrodynamic resistance (Jessen et al., 2024). 
We combined the vascular trees of the portal vein and the hepatic artery into one supplying structure.

(2) We divided the synthetic supplying and draining trees in larger vessel segments that are kept resolved, and smaller vessel 
segments that are replaced by two homogenized flow compartments, one for the lower hierarchies of the supplying tree and 
one for the lower hierarchies of the draining tree. We used the smaller vessel segments to find compartmental permeability 
and intercompartmental perfusion coefficients via a homogenization procedure, based on a scale separation of one order of 
magnitude between macroscale (full organ), representative averaging volume, and radii of the vessels to be homogenized.

(3) We assumed that the compartments supply and drainage are connected via a compartment microcirculation, whose permeability 
represents the resistance of the capillary network of sinusoids at the microscale. The compartments supply and drainage are 
coupled to the outlets of the resolved vessel segments via suitably estimated source and sink terms in the continuity equation.

(4) The characteristic time scale of our regrowth model formulated in the compartment microcirculation is days. We therefore 
describe liver regrowth by a sequence of quasi-static growth processes. We also assumed that liver regrowth can be regarded as 
isotropic from a macroscopic viewpoint.

(5) We assumed that we can keep the same porosity during regrowth. Hence, the growth factor is not only applied to the tissue 
skeleton, but also to the perfusing blood, representing the added mass of the blood that occupies additional sinusoid space.

(6) We postulated a phenomenological link between the evolution equation for the growth factor, representing volumetric growth, 
and the inflow rate density into the compartment microcirculation, measuring (hyper-)perfusion. We then proposed a growth 
criterion that represents the relative increase of the current homogenized blood flow at each macroscale point with respect to 
the (supposedly healthy) homeostatic state before resection in the same liver. This homeostatic reference automatically accounts 
for potential individual perfusion characteristics in a patient-specific simulation model.

(7) For the largest vessels of the resected vascular tree structure, we assumed that remodeling solely involves adaptations in length 
and position. Furthermore, their supply and drainage activity is scaled up after resection via a corresponding change in diameter 
(vasodilation). For medium- and smaller-sized vessels homogenized in the compartments supply and drainage, we assumed 
that remodeling is reflected through geometric updates of the homogenized permeability and perfusion coefficients. At the 
capillary level, we assumed that remodeling is effective instantly, so that the resistance of the sinusoid network in terms of the 
permeability in the compartment microcirculation always corresponds to the same (healthy) tissue.
29



Journal of the Mechanics and Physics of Solids 200 (2025) 106113A. Ebrahem et al.
We calibrated our regrowth model with experimental liver data, adjusting parameters for the growth speed, nonlinearity, and 
maximum growth factor, to match observed liver volume regeneration curves. We then applied the resulting modeling framework 
to a full-scale patient-specific liver example, for which we assumed a common surgical resection cut. The cut also involved orphan 
vessels that loose connection to the root of the supplying tree and hence induce local insufficient blood supply of the microcirculation 
(hypoperfusion). We conducted finite element simulations of the perfusion behavior of the unresected full liver and the regeneration 
of the resected liver, with a focus on how well our modeling framework represents characteristic phenomena at the organ scale.

We observed that the resection reduced our example liver to 79.8% of its original volume, but after 300 h it recovered to 98.6%. 
The overall regrowth dynamics of our model thus corresponds well with common clinical observations (Yamanaka et al., 1993; 
Yamamoto et al., 2016). We furthermore observed that the homogenized flow rate density significantly increased after resection 
and reduced over time to the level of the homeostatic state in the unresected full liver. These results demonstrate that our model is 
able to represent hyperperfusion as a consequence of partial resection and to account for the reduction of hyperperfusion towards 
a homeostatic perfusion state in the regrown liver.

Furthermore, the simulation results suggest a pronounced variability in the local perfusion state across the growing liver domain, 
demonstrated via histograms and distribution parameters. The growth factor observed ranges from 1.48 (twice the average) to 1.0 
(no growth at all), the homogenized flow rate density from 0.017 to 0.0 s−1. Hence, we do not only capture hyperperfusion, but also 
the expected local hypoperfusion in the vicinity of the orphan vessels. Capturing variations in perfusion during regrowth is likely a 
key component for potential applications in simulation-based diagnosis and prediction, e.g., for hypoperfusion-driven ischemia or 
for the preoperative identification of suitable cut patterns for partial liver resection. These observations emphasize the need for a 
localized growth criterion such as the one proposed in this work.

The current model provides a basis for further research and refinement with respect to a number of aspects, some of which are:

(1) While our model provides insights into perfusion and regrowth dynamics, it does not yet account for liver functions, metabolism, 
or pathological preconditions, which can be additional important factors in a more comprehensive analysis of liver regeneration 
processes.

(2) The current compartment microcirculation with one global permeability parameter that represents the flow resistance of the 
capillary network of sinusoids could be extended or replaced by a lobule-level perfusion approach that can represent the variation 
of specific properties relevant for perfusion and regrowth across the microcirculation, e.g., based on an efficient reduced-order 
model of a lobule (Siddiqui et al., 2024).

(3) The current approach assumes isotropic growth, but liver regrowth may exhibit anisotropic behavior. Future research could 
explore anisotropic growth models to provide a possibly more realistic representation of liver regeneration. This involves 
defining preferred directions for growth based on local mechanical or biological factors.

(4) To better understand the impact of parameter variations on model outcomes, a detailed sensitivity analysis (e.g., for the multi-
compartment model) is of interest. This may involve systematically varying model parameters (e.g., size of representative 
averaging volume, number of compartments, separation criterion for macroscopic and microscopic vasculature) to identify how 
changes affect predictions of liver perfusion and regrowth.

(5) At the current (early) stage of development of our modeling framework, comprehensive validation studies against experimental 
and clinical data have not been conducted yet, but constitute a crucial next step. For the current model, our plans include the 
monitoring of tissue growth rates and changes in the vascular system, based on available experimental and clinical CT data for 
humans (Forbes and Newsome, 2016) or in comparison with liver ischemia-reperfusion experiments in mice. We also plan to 
assess our results in comparison with existing simpler ODE-based regrowth models (Furchtgott et al., 2009; Christ et al., 2017).

(6) Along the same lines, the current model benefits from further personalization to reflect individual patient characteristics. This 
includes refining model parameters based on patient-specific data.
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