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ABSTRACT
The macro-element variant of the hybridized discontinuous Galerkin (HDG) method combines advantages of continuous and
discontinuous finite element discretization. In this paper, we investigate the performance of the macro-element HDG method for
the analysis of compressible flow problems at moderate Reynolds numbers. To efficiently handle the corresponding large systems
of equations, we explore several strategies at the solver level. On the one hand, we utilize a second-layer static condensation
approach that reduces the size of the local system matrix in each macro-element and hence the factorization time of the local
solver. On the other hand, we employ a multi-level preconditioner based on the FGMRES solver for the global system that integrates
well within a matrix-free implementation. In addition, we integrate a standard diagonally implicit Runge–Kutta scheme for time
integration. We test the matrix-free macro-element HDG method for compressible flow benchmarks, including Couette flow, flow
past a sphere, and the Taylor–Green vortex. Our results show that unlike standard HDG, the macro-element HDG method can
operate efficiently for moderate polynomial degrees, as the local computational load can be flexibly increased via mesh refinement
within a macro-element. Our results also show that due to the balance of local and global operations, the reduction in degrees of
freedom, and the reduction of the global problem size and the number of iterations for its solution, the macro-element HDG
method can be a competitive option for the analysis of compressible flow problems.

1 | Introduction

Discontinuous Galerkin (DG) methods [1] have been widely rec-
ognized for their favorable attributes in tackling conservation
problems. They possess a robust mathematical foundation, the
flexibility to employ arbitrary orders of basis functions on gen-
eral unstructured meshes, and a natural stability property for
convective operators [2–5]. About a decade ago, the hybridized
discontinuous Galerkin (HDG) method was introduced, setting
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itself apart with distinctive features within the realm of DG meth-
ods [6]. The linear systems arising from the HDG method exhibit
equivalence to two different systems: the first globally couples
the numerical trace of the solution on element boundaries, lead-
ing to a significant reduction in degrees of freedom. The second
couples the conserved quantities and their gradients at the ele-
ment level, allowing for an element-by-element solution. Due to
these advantages, numerous research endeavors have extended
the application of the HDG method to address a diverse array
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of initial boundary value problems [7–15]. Nevertheless, in the
face of extensive computations, relying solely on the hybridiza-
tion approach may fall short in overcoming limitations related to
memory and time-to-solution [16, 17]. Ongoing research efforts
[18–20] highlight these challenges and help provide motivation
for the current work.

Compared to the DG method, the classical finite element for-
mulation, also known as the continuous Galerkin (CG) method
[21, 22], leads to fewer unknowns when the same mesh is used.
Nevertheless, unstructured mesh generators frequently produce
meshes with high vertex valency, resulting in intricate communi-
cation patterns during parallel runs on distributed memory sys-
tems, thereby affecting scalability [23, 24]. The HDG method,
although generating a global system with a higher rank than the
traditional statically condensed system in CG, demonstrates sig-
nificantly reduced bandwidth at moderate polynomial degrees.

The macro-element variant of the HDG method, recently moti-
vated by the authors for advection–diffusion problems [25],
investigates a discretization strategy that amalgamates elements
from both the CG and HDG approaches, enabling several distinc-
tive features that sets it apart from the CG and the standard HDG
method. First and foremost, by incorporating continuous ele-
ments within macro-elements, the macro-element HDG method
effectively tackles the issue of escalating the number of degrees of
freedom in standard HDG methods for a given mesh. Second, it
provides an additional layer of flexibility in terms of tailoring the
macro-element discretization and adjusting the associated local
problem size to match the specifications of the available com-
pute system and its parallel architecture. Third, it introduces a
direct approach to adaptive local refinement, enabling uniform
simplicial subdivision. Fourth, all local operations are embarrass-
ingly parallel and automatically balanced. This eliminates the
necessity for resorting to load balancing procedures external to
the numerical method. Consequently, the macro-element HDG
method is highly suitable for a matrix-free solution approach.

In this article, we extend the macro-element variant of the HDG
method [25] to solving steady and unsteady compressible flow
problems given by the Navier–Stokes equations. On the one
hand, unlike in standard HDG schemes, the time complexity of
the local solver in the macro-element HDG method increases
significantly as the size of local matrices grows. Therefore, effec-
tively managing the local matrix is pivotal for achieving scala-
bility in the macro-element HDG algorithm. On the other hand,
the macro-element HDG method can alleviate the accelerated
growth of degrees of freedom that stems from the duplication of
degrees of freedom along element boundaries. Recent research,
as documented in References [18, 26, 27], has explored alter-
native techniques to tackle this challenge within the standard
HDG method. These techniques pivot toward Schur complement
approaches for the augmented system, addressing both local and
global unknowns rather than solely focusing on the numerical
trace. In our study, we integrate and synthesize some of these
techniques to present an efficient, computationally economi-
cal, and memory-friendly version of the macro-element HDG
algorithm.

The paper is organized as follows. In Section 2, we delin-
eate the differential equations and elucidate the spatial and

temporal discretizations employed in this study, leveraging the
macro-element HDG method. Section 3 delves into the devel-
opment of parallel iterative methods designed to solve the non-
linear system of equations resulting from the discretization
process. Within this section, we focus on an inexact variant of
Newton’s method, standard static condensation, and an alterna-
tive second-layer static condensation approach. In Section 4, we
present the matrix-free implementation utilized in this investi-
gation, alongside a discussion of global solver options and the
corresponding choices of preconditioners. Section 5 is devoted to
showcasing the outcomes of numerical experiments conducted
with our macro-element HDG variant, juxtaposed against the
standard HDG method. These experiments encompass several
test cases, ranging from three-dimensional steady to unsteady
flow scenarios. A comprehensive comparative analysis is under-
taken, evaluating the methods in terms of accuracy, iteration
counts, computational time, and the number of degrees of free-
dom in the local/global solver, with a particular focus on the par-
allel implementation.

2 | The HDG Method on Macro-Elements
for Compressible Flow

We first present the Navier–Stokes equations for modeling com-
pressible flows. We proceed with a summary of the notation nec-
essary for the description of the macro-element HDG method,
following the notation laid out in our earlier work [25]. Next,
we briefly describe the macro-element DG discretization in space
and the implicit Runge–Kutta discretization in time.

2.1 | Governing Equations

The time dependent compressible Navier–Stokes equations are a
non-linear conservation law system that can be written as follows:

𝜕
𝑡∗𝜌

∗ + ∇∗ ⋅ (𝜌∗v) = 0 (1a)

𝜕
𝑡∗ (𝜌∗v) + ∇∗ ⋅ (𝜌∗v∗ ⊗ v∗) + ∇∗𝑃 ∗ − ∇∗ ⋅ 𝝉∗ = 0 (1b)

𝜕
𝑡∗

(
𝜌
∗
𝑬
∗) + ∇⋅∗

(
𝜌
∗
𝑯

∗v∗
)
− ∇∗ ⋅

(
𝝉
∗v∗ − 𝝓∗

)
= 0 (1c)

where 𝜌
∗ is the density, v∗ the velocity, and 𝐸

∗ the total specific
energy, subject to the initial conditions 𝜌

∗ = 𝜌
∗
0, v∗ = v∗0, 𝐸∗ = 𝐸

∗
0 .

Furthermore, 𝑃
∗ is the pressure, 𝐻

∗ = 𝐸
∗ + 𝑃

∗∕𝜌∗ the total spe-
cific enthalpy, and the shear stress and heat flux are respectively
given by:

𝛕∗ = 𝜇
∗(∇v∗ + (∇∗v∗)𝑇 + 𝜆(∇∗ ⋅ v∗)I

)
(2a)

𝝓
∗ = −𝜅

∗∇∗𝑻 ∗ (2b)

Here, 𝜇 is the dynamic viscosity, 𝜆 = −2∕𝑑, with spatial dimen-
sion 𝑑, 𝑇

∗ is the temperature, and 𝜅
∗ the thermal conductivity.

The thermodynamical variables 𝑃
∗
, 𝜌
∗ and 𝑇

∗ are related through
an equation of state 𝑃

∗ = 𝑃
∗(𝜌∗, 𝑇 ∗). In this work, we employ the

(calorically) perfect gas equation of state: 𝑃 ∗ = 𝜌
∗
𝑅
∗
𝑇
∗, where 𝑅

∗

is the specific gas constant. The temperature 𝑇
∗ is related to the

internal energy via the constitutive relation 𝑒
∗ = 𝑐

∗
𝑣
𝑇
∗, where 𝛾
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is the ratio of specific heats, and 𝑐
∗
𝑣
= 𝑅

∗∕(𝛾 − 1) is the specific
heat at constant volume. The total specific energy is given by
𝐸
∗ = 𝑒

∗ + v∗ ⋅ v∗∕2. We introduce a rescaling of the system based
on the following dimensionless variables:

x = x∗
𝑋0

, 𝑡 =
𝑡
∗
𝑐∞

𝑋0
, v = v∗

𝑐∞
, 𝜌 = 𝜌

∗

𝜌∞
,

𝑃 = 𝑃
∗

𝜌∞𝑐2
∞

, 𝑒 = 𝑒
∗

𝑐2
∞

, 𝐸 = 𝐸
∗

𝑐2
∞

𝑇 = 𝑇
∗

𝑇∞
, 𝜇 = 𝜇

∗

𝜇∞
, 𝜅 = 𝜅

∗

𝜅∞
,

𝑅 = 𝑅
∗

𝑐
𝑝∞

𝑐
𝑣
=

𝑐
∗
𝑣

𝑐
𝑝∞

𝑐
𝑝
=

𝑐
∗
𝑝

𝑐
𝑝∞

(3)

where 𝑋0 is a characteristic length, 𝑐∞ the free-stream speed
of sound, 𝜌∞ the free-stream density, 𝑇∞ the free-stream
temperature and 𝜇∞ the free-stream dynamic viscosity. The
non-dimensional system may be written in the compact form
[10, 13]:

𝜕u
𝜕𝑡
+ ∇ ⋅ (F(u) + G(u, q)) = 0 (4a)

q − ∇u = 0 (4b)

subject to the initial condition u = u0. Here, u = (𝜌, 𝜌v, 𝜌E)𝑇
denotes the state vector of dimension 𝑛

𝑠
. It is of dimension 𝑑 + 2,

where 𝑑 is the spatial dimension. The inviscid and viscous fluxes
F = F(u) and G = G(u, q), respectively, are given by:

F(u) = [𝜌v, 𝜌v ⊗ v + 𝑃 I, 𝜌v𝐻]𝑇 (5a)

G(u, q) = −[0, 𝜏, 𝜏v − 𝝓]𝑇 (5b)

The shear stress and heat flux take the form:

𝜏 = 1
Re

𝑐∞

(
𝜇
(
∇v + (∇v)𝑇 + 𝜆(∇ ⋅ v)I

))
(6a)

𝝓 = − 1
Re

𝑐∞
Pr

𝜅

𝑅
∇𝑇 (6b)

Since a mixed method is used, vectors ∇v and ∇𝑇 are derived
from q. Also, the acoustic Reynolds number and Prandtl number
are given by:

Re
𝑐∞
=

𝜌∞𝑐∞𝑋0

𝜇∞
(7a)

Pr =
𝑐
𝑝∞𝜇∞

𝜅∞
(7b)

Finally, the thermodynamical relations are in non-dimensional
form as follows: 𝛾P = 𝜌T, 𝑒 = 𝑐

𝑣
𝑇 , 𝑐

𝑣
= 𝑅∕(𝛾 − 1), and 𝐸 = 𝑒 +

v ⋅ v∕2.

2.2 | Finite Element Mesh and Spaces
on Macro-Element

We denote by 
ℎ

a collection of disjoint regular elements 𝐾 that
partition Ω, and set 𝜕

ℎ
≔

{
𝜕𝐾 ∶ 𝐾 ∈ 

ℎ

}
to be the collection

of the boundaries of the elements in 
ℎ
. For an element 𝐾 of

the collection 
ℎ
, 𝑒 = 𝜕𝐾 ∩ 𝜕Ω is a boundary face if its 𝑑 − 1

Lebesgue measure is nonzero. For two elements 𝐾
+ and 𝐾

− of


ℎ
, 𝑒 = 𝜕𝐾

+ ∩ 𝜕𝐾
− is the interior face between 𝐾

+ and 𝐾
− if its

𝑑 − 1 Lebesgue measure is nonzero. We denote by 𝜀
Int and 𝜀

𝜕 the
set of interior and boundary faces, respectively, and we define
𝜀

ℎ
≔ 𝜀

Int ∪ 𝜀
𝜕 as the union of interior and boundary faces.

Figure 1 illustrates the degree of freedom structure of a
macro-element. We first partition the domain in macro-elements
(blue lines). Each macro-element is then further split into
standard finite elements, which define standard 𝐶

0-continuous
basis functions. From a global viewpoint, these basis func-
tions are discontinuous across macro-element interfaces. The
macro-elements are therefore coupled together in an HDG
sense. Consequently, the trace variable is defined only on the
macro-element interfaces. It is easy to see that the macro-element
HDG method contains the standard HDG method as a special
case, when each macro-element contains only one standard finite
element. In this work, we focus on simplicial meshes obtained by
splitting each macro-simplex into a regular number of triangles
or tetrahedral elements. But we note that our methodology can
directly be transferred to other element types such as quadrilat-
erals or hexahedra.

Let 
𝑝
(𝐷) denote the set of polynomials of degree at most 𝑝 on a

domain 𝐷 and let 𝐿
2(𝐷) be the space of square-integrable func-

tions on 𝐷. Our macro-element variant of the HDG method uses
patches of standard 𝐶

0 continuous elements that are discontinu-
ous only across patch boundaries. Hence, on macro-elements, we
use continuous piece-wise polynomials. We introduce the follow-
ing finite element spaces:


𝑘

ℎ
= {𝒘 ∈

[
𝐶

0(𝐾)
]𝑛

𝑠 ∶ 𝒘|||𝐾 ∈
[


𝑝
(𝐾)

]𝑛
𝑠 ∀𝐾 ∈ 

ℎ
} (8a)


𝑘

ℎ
= {𝒓 ∈

[
𝐶

0(𝐾)
]𝑛

𝑠
×𝑑 ∶ 𝒓|||𝐾 ∈

[


𝑝
(𝐾)

]𝑛
𝑠
×𝑑 ∀𝐾 ∈ 

ℎ
} (8b)


𝑘

ℎ
= {𝝁 ∈

[
𝐿

2(
𝜀

ℎ

)]𝑛
𝑠 ∶ 𝝁|||𝑒 ∈

[


𝑝
(𝑒)

]𝑛
𝑠 ∀𝑒 ∈ 𝜀

ℎ
} (8c)


𝑘

ℎ
= {𝜇 ∈ 𝐿

2(
𝜀

ℎ

)
∶ 𝜇

|||𝑒 ∈ 𝑝
(𝑒) ∀𝑒 ∈ 𝜀

ℎ
} (8d)

Next, we define several inner products associated with these finite
element spaces. In particular, given 𝑤, 𝑣 ∈ 𝑘

ℎ
, 𝒘, 𝒗 ∈ 𝑘

ℎ
and

𝑾 ,𝑽 ∈ 𝑘

ℎ
we write:

(𝑤, 𝑣)ℎ =
∑

𝐾∈ℎ

(𝑤, 𝑣)𝐾 =
∑

𝐾∈ℎ
∫

𝐾

wv𝐾, (𝒘, 𝒗)ℎ =
𝑛𝑠∑

𝑖=1

(
𝑤𝑖, 𝑣𝑖

)
ℎ

,

(𝑾 ,𝑽 )ℎ =
𝑛𝑠∑

𝑖=1

𝑑∑

𝑗=1

(
𝑊ij, 𝑉ij

)
ℎ

(9)

The corresponding inner product for functions in the trace spaces
are given by:

⟨𝜂, 𝜁⟩𝜕ℎ =
∑

𝐾∈ℎ

⟨𝜂, 𝜁⟩𝜕𝐾 = black
∑

𝐾∈ℎ
∫

𝜕𝐾

𝜂𝜁, ⟨𝜼, 𝜁⟩𝜕ℎ =
𝑛𝑠∑

𝑖=1
⟨𝜂𝑖, 𝜁𝑖⟩𝜕ℎ

(10)
for all 𝜂, 𝜁 ∈𝑘

ℎ
and 𝜂, 𝜁 ∈𝑘

ℎ
.

2.3 | Macro-Element Discretization

We seek an approximation
(
q

ℎ
(𝑡), u

ℎ
(𝑡), û

ℎ
(𝑡)

)
∈ 𝑘

ℎ
× 𝑘

ℎ
×𝑘

ℎ

such that
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FIGURE 1 | Illustration of the macro-element HDG discretization of a 3D tetrahedral domain and a triangular domain in 2D for the case of 𝑝 = 2.
The blue lines represent the boundaries of macro-elements, while the black lines represent the boundaries of the 𝐶

0-continuous finite elements within
each macro-element. We note that we refer to the set of standard finite elements within one macro-element as a (macro-element) patch. [Colour figure
can be viewed at wileyonlinelibrary.com]

(
q

ℎ
, 𝒓
)


ℎ

+
(
u

ℎ
,∇ ⋅ 𝒓

)


ℎ

−
⟨

û
ℎ
, 𝒓𝒏

⟩
𝜕

ℎ

= 0 (11a)

(
𝜕u

ℎ

𝜕𝑡
,𝒘

)


ℎ

−
(
F

ℎ

(
u

ℎ

)
+ G

ℎ

(
u

ℎ
q

ℎ

)
,∇𝒘

)


ℎ

+
⟨

F̂
ℎ
+ Ĝ

ℎ
,𝒘⊗ 𝒏

⟩

𝜕
ℎ

+
∑

𝑒∈𝐾

(
(A ⋅ ∇)𝒘, 𝜏SUPGR

)


ℎ

= 0

(11b)
⟨

F̂
ℎ
+ Ĝ

ℎ
,𝝁⊗ 𝒏

⟩

𝜕
ℎ
∖𝜕Ω

+
⟨

B̂
ℎ

(
û

ℎ
, u

ℎ
, q

ℎ

)
,𝝁⊗ 𝒏

⟩

𝜕Ω
= 0 (11c)

for all (r, w,𝝁) ∈ 𝑘

ℎ
× 𝑘

ℎ
×𝑘

ℎ
and all 𝑡 ∈ (0, 𝑇 ]. The boundary

trace operator B̂
ℎ

(
û

ℎ
, u

ℎ
, q

ℎ

)
imposes the boundary conditions

along 𝜕Ω exploiting the hybrid variable [11]. We take the interior
numerical fluxes of the form:

(
F̂

ℎ
+ Ĝ

ℎ

)
𝒏 =

(
F

ℎ

(
û

ℎ

)
+ G

ℎ

(
û

ℎ
, q

ℎ

))
𝒏 + S

(
u

ℎ
, û

ℎ

)(
u

ℎ
− û

ℎ

)
𝒏 on 𝜕

ℎ

(12)

where n denotes the outward unit normal vector. The latter mem-
ber of (12) involves the stabilization tensor S that enhances the
stability of the HDG method. The inviscid and viscous compo-
nents of the system are separately stabilized by means of the
decomposition [10]:

S = Sinv + Svis (13a)

Sinv = 𝜆maxI (13b)

Svis = 1
Re

diag
(
0,Υ, 1∕

[
(𝛾 − 1)𝑀2

∞ Pr
])

(13c)

where I is the identity matrix, Υ is a (𝑛
𝑠
− 2)-dimensional vector

of ones, and 𝑀∞ is the free stream Mach number. The inviscid
stabilization tensor Sinv is a local Lax-Friedrich stabilization in
which 𝜆max is the maximum absolute eigenvalue of the Jacobian

matrix 𝜕F
ℎ
∕𝜕û

ℎ
. Finally, the latter term in (11b) is a standard

residual-based streamline-upwind-Petrov Galerkin (SUPG) stabi-
lization term [28, 29] where R is the local residual of the govern-
ing Equation (11b), A is the Jacobian of the inviscid flux and 𝜏SUPG
is the stabilization matrix. The precise definitions of the A and
𝜏SUPG are described in References [30–33]. This stabilization term
is active within the 𝐶

0-macro-elements, and further improves the
stability for a wide range of Reynolds and Mach numbers.

2.4 | Temporal Integration

We adopt the s-stage diagonally implicit Runge–Kutta (DIRK)
time-discretization scheme [34]. Due to their higher-order
accuracy and wide stability range, DIRK methods are widely
employed temporal integration schemes for stiff systems.
We refer the interested reader to comprehensive reviews of
higher-order time integration methods suitable for HDG meth-
ods [9, 15]. The Butcher’s table associated with the DIRK method
can be written as:

𝑐1 𝑎11 0 · · · 0
𝑐2 𝑎21 𝑎22 · · · 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑐
𝑠

𝑎
𝑠1 𝑎

𝑠2 · · · 𝑎ss

𝑏1 𝑏2 · · · 𝑏
𝑠

(14)

where we assume the matrix 𝑎ij to be non-singular, 𝑐
𝑖

and 𝑏
𝑖

are numbers that depend on DIRK type [34]. Denoting the
time level by 𝑛, we have 𝑛 = 𝑠(𝑙 − 1) + 𝑖, where 𝑠 is the num-
ber of stages, 𝑙 the current time step, and 𝑖 = 1, . . . , 𝑠 the cur-
rent stage within the current time step. Let 𝑑ij denote the inverse
of 𝑎ij, and let

(
q𝑛,𝑖

ℎ
, u𝑛,𝑖

ℎ
, û𝑛,𝑖

ℎ

)
be the intermediate solutions of

(
q

ℎ

(
𝑡
𝑛,𝑖
)
, u

ℎ

(
𝑡
𝑛,𝑖
)
, û

ℎ

(
𝑡
𝑛,𝑖
))

at the discrete time 𝑡
𝑛,𝑖 = 𝑡

𝑛
+ 𝑐

𝑖
Δ𝑡

𝑛,
where 1 ≤ 𝑖 ≤ 𝑠. The numerical solution u𝑛+1

ℎ
at the time level
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𝑛 + 1 given by the DIRK method is computed as follows:

u𝑛+1
ℎ

=

(

1 −
𝑠∑

𝑖=1
𝑒

𝑗

)

u𝑛

ℎ
+

𝑠∑

𝑗=1
u𝑛,𝑗

ℎ
(15)

where 𝑒
𝑗
=

∑𝑠

𝑗=1𝑏𝑖
𝑑ij. The intermediate solutions are determined

as follows: we search for
(

q𝑛,𝑖

ℎ
, u𝑛,𝑖

ℎ
, û𝑛,𝑖

ℎ

)
∈ 𝑘

ℎ
× 𝑘

ℎ
×𝑘

ℎ
such

that the following is satisfied:

(
q𝑛,𝑖

ℎ
, 𝒓
)


ℎ

+
(
u𝑛,𝑖

ℎ
,∇ ⋅ 𝒓

)


ℎ

−
⟨

û𝑛,𝑖

ℎ
, 𝒓𝒏

⟩

𝜕
ℎ

= 0 (16a)

(∑𝑠

𝑗=1𝑑ij
(
u𝑛,𝑗

ℎ
− u𝑛

ℎ

)

Δ𝑡𝑛
,𝒘

)


ℎ

−
(
F𝑛,𝑖

ℎ
+ G𝑛,𝑖

ℎ
,∇𝒘

)


ℎ

+
⟨

F̂
𝑛,𝑖

ℎ
+ Ĝ

𝑛,𝑖

ℎ
,𝒘⊗ n

⟩

𝜕
ℎ

+
∑

𝑒∈𝐾

((
A𝑛,𝑖 ⋅ ∇

)
w, 𝜏

𝑛,𝑖

SUPGR𝑛,𝑖
)


ℎ

= 0

(16b)
⟨

F̂
𝑛,𝑖

ℎ
+ Ĝ

𝑛,𝑖

ℎ
,𝝁⊗ n

⟩

𝜕
ℎ
∖𝜕Ω

+
⟨

B̂
𝑛,𝑖

ℎ

(
û𝑛,𝑖

ℎ
, u𝑛,𝑖

ℎ
, q𝑛,𝑖

ℎ

)
,𝝁⊗ n

⟩

𝜕Ω
= 0

(16c)

for all (𝒓,𝒘,𝝁) ∈ 𝑘

ℎ
× 𝑘

ℎ
×𝑘

ℎ
. Once u𝑛+1

ℎ
has been determined

as above, we search for
(

q𝑛+1
ℎ

, û𝑛+1
ℎ

)
∈ 𝑘

ℎ
×𝑘

ℎ
such that

(
q𝑛+1

ℎ
, r
)


ℎ

+
(
u𝑛+1

ℎ
,∇ ⋅ r

)


ℎ

−
⟨

û𝑛+1
ℎ

, rn
⟩

𝜕
ℎ

= 0 (17a)

⟨
F̂

𝑛+1
ℎ

+ Ĝ
𝑛+1
ℎ

, 𝜇 ⊗ n
⟩

𝜕ℎ∖𝜕Ω
+
⟨

B̂
𝑛+1
ℎ

(
û𝑛+1

ℎ
, u𝑛+1

ℎ
, q𝑛+1

ℎ

)
, 𝜇 ⊗ n

⟩

𝜕Ω
= 0

(17b)

for all (r, w,𝝁) ∈ 𝑘

ℎ
× 𝑘

ℎ
×𝑘

ℎ
.

Remark 1. The system (16) can be advanced in time without
solving (17). Hence, in practice we only solve (17) at the time steps
that we need

(
q𝑛+1

ℎ
, û𝑛+1

ℎ

)
for post-processing purposes. Finally,

it is worth mentioning that certain specific DIRK schemes, such
as the strongly s-stable DIRK (2, 2) and DIRK (3, 3) schemes, have
the unique property that 𝑐

𝑠
= 1. As a consequence, (17) becomes

identical to (16) at final stage 𝑖 = 𝑠. As a result, these particular
DIRK schemes do not require the solution of Equation (17).

3 | Parallel Iterative Solvers

We construct parallel iterative methods for the solution of the
nonlinear system of Equation (16). First, in Section 3.1, we lin-
earize the nonlinear global problem by means of an inexact
Newton method. Next, we propose two different options for the
solution of the linear system; standard static condensation in
Section 3.2, and an alternative second-layer static condensation
approach in Section 3.3.

3.1 | Nonlinear Solver: Inexact Newton Method

At any given (sub) time step 𝑛, the nonlinear system of
Equation (16) can be written as

𝑅
𝑄

(
q𝑛

ℎ
, u𝑛

ℎ
, û𝑛

ℎ

)
= 0 (18a)

𝑅
𝑈

(
q𝑛

ℎ
, u𝑛

ℎ
, û𝑛

ℎ

)
= 0 (18b)

𝑅
𝑈

(
q𝑛

ℎ
, u𝑛

ℎ
, û𝑛

ℎ

)
= 0 (18c)

where 𝑅
𝑄

, 𝑅
𝑈

, and 𝑅
𝑈

are the discrete nonlinear residuals asso-
ciated to Equations 11a, 11b, and 11c, respectively.

To address the nonlinear system (18), we use pseudo-transient
continuation [35, 36], which is an inexact Newton method. The
procedure requires an adaptation algorithm of the pseudo time
step size to complete the method. In this study, we employ the
successive evolution relaxation (SER) algorithm [37] with the fol-
lowing parameters:

Δ𝜏
0 = 𝜏init, Δ𝜏

𝑚+1 = min

(

Δ𝜏
𝑚
||𝑅

𝑈
||𝑚+1

𝐿2

||𝑅
𝑈
||𝑚

𝐿2

, 𝜏max

)

(19)

Here, 𝑚 is the iteration step for the pseudo-transient continu-
ation. In this study, if not otherwise specified, 𝜏init = 1.0 and
𝜏max = 108. By linearizing (18) with respect to the solution(
q𝑚,𝑛

ℎ
, u𝑚,𝑛

ℎ
, û𝑚,𝑛

ℎ

)
at the Newton step 𝑚 = 0, 1, . . . , we obtain the

subsequent linear system:

⎡
⎢
⎢
⎢
⎣

A𝑚,𝑛

qq A𝑚,𝑛

qu A𝑚,𝑛

𝑞𝑢̂

A𝑚,𝑛

uq A𝑚,𝑛

uu A𝑚,𝑛

𝑢𝑢̂

A𝑚,𝑛

𝑢̂𝑞
A𝑚,𝑛

𝑢̂𝑢
A𝑚,𝑛

𝑢̂𝑢̂

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Δ𝑄
𝑚,𝑛

Δ𝑈
𝑚,𝑛

Δ𝑈
𝑚,𝑛

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

𝑅
𝑚,𝑛

𝑄

𝑅
𝑚,𝑛

𝑈

𝑅
𝑚,𝑛

𝑈

⎤
⎥
⎥
⎥
⎦

(20)

where Δ𝑄
𝑚,𝑛, Δ𝑈

𝑚,𝑛, and Δ𝑈
𝑚,𝑛 are the update of the vector of

degrees of freedom of the discrete field solutions q𝑚,𝑛

ℎ
, u𝑚,𝑛

ℎ
, and

û𝑚,𝑛

ℎ
, respectively. The next Newton update of these solution fields

is defined as
(

q𝑚+1,𝑛

ℎ
, u𝑚+1,𝑛

ℎ
, û𝑚+1,𝑛

ℎ

)
≔

(
q𝑚,𝑛

ℎ
, u𝑚,𝑛

ℎ
, û𝑚,𝑛

ℎ

)
+
(
Δq𝑚,𝑛

,Δu𝑚,𝑛
,Δû𝑚,𝑛

)

(21)
Newton iterations are repeated until the norm of the full residual
vector 𝑅

𝐹
≔

(
𝑅

𝑄
, 𝑅

𝑈
, 𝑅

𝑈

)
is smaller than a specified tolerance.

3.2 | Linear Solver: Static Condensation

The first method that we discuss for the solution of the linear
system of Equation (20) is static condensation. First, we dis-
cuss the system of equations for each macro element, and sub-
sequently the global system. Eliminating both Δ𝑄 and Δ𝑈 in
an element-by-element fashion, as mentioned earlier, can be
achieved using the first two equations in (20). As a result, we com-
pute for each macro-element 

𝑖
the solution updates Δ𝑄


𝑖 and

Δ𝑈


𝑖 as
[
Δ𝑄


𝑖

Δ𝑈


𝑖

]

=
(

A𝑖

local

)−1
(

−

[
𝑅


𝑖

𝑄

𝑅


𝑖

𝑈

]

−

[
A𝑖

𝑞𝑢̂

A𝑖

𝑢𝑢̂

]

Δ𝑈
Γ

𝑖

)

(22)

where the block structured local matrices are given by:

A𝑖

local =

[
A𝑖

qq A𝑖

qu

A𝑖

uq A𝑖

uu.

]

(23)
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Next, we consider the global system of equations. We note that
the matrix

[
AqqAqu;AuqAuu

]
has a block-diagonal structure. This

permits expressing Δ𝑈 and Δ𝑄 in terms of Δ𝑈 . By eliminating
Δ𝑄 and Δ𝑈 from (20), we obtain the globally coupled reduced
system of linear equations:

ÂΔ𝑈 = b̂ (24)

which has to be solved in every Newton iteration. The
macro-element contributions to the global reduced system are
given by:

Â


𝑖 = A𝑖

𝑢̂𝑢̂
−
[
A𝑖

𝑢̂𝑞
A𝑖

𝑢̂𝑢

](
A𝑖

local

)−1
[

A𝑖

𝑞𝑢̂

A𝑖

𝑢𝑢̂

]

(25a)

b̂


𝑖 = −𝑅


𝑖

𝑈

+
[
A𝑖

𝑢̂𝑞
A𝑖

𝑢̂𝑢

](
A𝑖

local

)−1
[

𝑅


𝑖

𝑄

𝑅


𝑖

𝑈

]

(25b)

As a result of the single-valued trace quantities û
ℎ
, the final

matrix system of the HDG method is smaller than that of many
other DG methods [10, 38, 39]. Moreover, the matrix Â has a small
bandwidth since solely the degrees of freedom between neighbor-
ing faces that share the same macro-element are connected [10].

Remark 2. We note that the local vector updates Δ𝑄


𝑖 and
Δ𝑈


𝑖 , and the global reduced system (24) need to be stored for

each macro-element.

3.3 | Linear Solver: Second-Layer Static
Condensation

We discuss an alternative to the static condensation strategy
described in Section 3.2, which we refer to as second-layer static
condensation in the following. We note that our algorithm is
motivated by the work of Kronbichler and co-authors [40] who
proposed a very similar algorithm (see Algorithm 3 and the
equations below on page 721 of their article). This approach con-
siders an alternative implementation of the trace matrix–vector
product. Instead of explicitly forming the Schur complement, the
matrix system (25) is expanded in terms of all contributing matri-
ces [17]. This method allows most matrix–vector products to be
executed in a matrix-free manner, employing the scheme pro-
posed in Kronbichler and co-authors [40] for the fast computation
of HDG residuals.

We start by exploiting the structure of the local block matrices,
which read:

A𝑖

local =

[
A𝑖

qq A𝑖

qu

A𝑖

uq A𝑖

uu

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A𝑖

𝑞
𝑥
𝑞

𝑥
0 0 A𝑖

𝑞
𝑥
𝑢

0 A𝑖

𝑞
𝑦
𝑞

𝑦
0 A𝑖

𝑞
𝑦
𝑢

0 0 A𝑖

𝑞
𝑧
𝑞

𝑧
A𝑖

𝑞
𝑦
𝑢

A𝑖

𝑢𝑞
𝑥

A𝑖

𝑢𝑞
𝑦

A𝑖

𝑢𝑞
𝑧

A𝑖

uu

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(26)

The form of (26) permits an efficient storage and inversion strat-
egy. Namely the inverse of the local matrix is given by:

(
A𝑖local

)−1
=

⎡
⎢
⎢
⎣

(
A𝑖qq

)−1
+
(

A𝑖qq

)−1
A𝑖qu

(
S𝑖

)−1A𝑖uq

(
A𝑖qq

)−1
−
(

A𝑖qq

)−1
A𝑖qu

(
S𝑖

)−1

−
(
S𝑖

)−1A𝑖uq

(
A𝑖qq

)−1 (
S𝑖

)−1

⎤
⎥
⎥
⎦

(27)

where S𝑖 = A𝑖

uu −A𝑖

uq

(
A𝑖

qq

)−1
A𝑖

qu is the Schur complement of

A𝑖

local. It is needless store the complete dense inverse
(

A𝑖

local

)−1
.

We observe that the inverse contains the inverse of the Schur com-
plement S𝑖 as well as the inverse of A𝑖

qq. We compute and store
the Schur complement

(
S𝑖

)−1 on each macro-element, which is
the same size as A𝑖

uu. The block matrix A𝑖

qq consists of the compo-
nents A𝑖

𝑞
𝑘
𝑞

𝑘
= diag

(
𝐽


𝑖

)
M, where 𝑘 is the coordinate direction, M

is the mass matrix over a reference macro-element, and 𝐽


𝑖 is the
determinant of the Jacobian of the geometrical map. Its inverse is
given by:

(
A𝑖

𝑞
𝑘
𝑞

𝑘

)−1
= diag

(
1∕𝐽 𝑖

)
M−1

where M−1 is the inverse mass matrix on a reference
macro-element. The inverse mass matrix may be precomputed
and stored. Substituting A𝑖

local from of (27) into Equation (25),
the contributions to the global system take the form:

Â
𝑖 =

(
A𝑖

𝑢̂𝑢
−A𝑖

𝑢̂𝑞

(
A𝑖qq

)−1
A𝑖qu

)(
S𝑖

)−1
(
−A𝑖

𝑢𝑢̂
+A𝑖uq

(
A𝑖qq

)−1
A𝑖

𝑞𝑢̂

)

+
(

A𝑖
𝑢̂𝑢̂
−A𝑖

𝑢̂𝑞

(
A𝑖qq

)−1
A𝑖

𝑞𝑢̂

)
(28a)

b̂
𝑖 =

(
−A𝑖

𝑢̂𝑢
+A𝑖

𝑢̂𝑞

(
A𝑖qq

)−1
A𝑖qu

)(
S𝑖

)−1
(
−𝑅

𝑖

𝑈
+A𝑖uq

(
A𝑖qq

)−1
𝑅
𝑖

𝑄

)

+
(
−𝑅

𝑖

𝑈

+A𝑖
𝑢̂𝑞

(
A𝑖qq

)−1
𝑅
𝑖

𝑄

)
(28b)

Finally, the local solution updates Δ𝑄


𝑖 and Δ𝑈


𝑖 are given by:

Δ𝑈


𝑖 =
(
S𝑖

)−1
[(

A𝑖

uq

(
A𝑖

qq

)−1
𝑅


𝑖

𝑄
−𝑅


𝑖

𝑈

)

+
(
−A𝑖

𝑢𝑢̂
Δ𝑈

Γ
𝑖 +A𝑖

uq

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)]
(29a)

Δ𝑄


𝑖 =
(

A𝑖

qq

)−1(
−𝑅


𝑖

𝑄
−A𝑖

quΔ𝑈


𝑖 −A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)
(29b)

Remark 3. We do not explicitly compute the inverse of the
Schur complement S−1, but instead compute an appropriate fac-
torization that we store, and then apply the inverse to a vector a
by solving the system Sx = a via back-substitution.

Remark 4. We note that the optimizations between
Equations (27) and (28) assume an affine mapping, which
excludes mappings on curved elements required for the descrip-
tion of curved geometries. In this work, all elements in the
interior of the domains, and hence the majority of the elements,
are affine. All interior elements are therefore straight-sided,
such that we can employ the quadrature-free approach. Curved
elements appear only along curved domain boundaries. The
curved elements at the boundaries are treated separately and
with quadrature.

4 | Implementation Aspects

The concept of the matrix-free evaluation of high-order DG
operators has been widely adopted and implemented within
several software and research projects, including deal.II [41],
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mfem [42], ExaDG [43], Exasim [44], and Nektar++ [45]. These
fast evaluation techniques are directly applicable to graphics
processors [46], and have been successfully applied to wave
propagation [47, 48] and fluid flow problems [49, 50]. As part of
the matrix-free evaluation of the macro-element HDG method,
we have developed efficient implementations for the compress-
ible Navier–Stokes equations. In the following, we provide
details of a matrix-free implementation and a brief description
of the preconditioning approach, which we will use in the
computational study thereafter.

4.1 | Matrix-Free Implementation

We apply a straightforward matrix-free parallel implementation
of the macro-element HDG method, for the both linear solvers
presented in Sections 3.2 and 3.3. We provide the details for the
second-layer static condensation of Section 3.3 in Algorithm 1,
and note that the static condensation of Section 3.3 follows sim-
ilarly. We provide a few core details of the algorithm for the
sake of clarity. In Lines 2–5, the vector contributions of each
macro-element local to process 𝑛 are assembled in a global vec-
tor. Due to the discontinuous nature of macro-elements, this
procedure requires only data from the macro-element local to
each process,  𝑛

ℎ
, and hence implies no communication between

processes.

The global linear system solve in Line 6 is carried out via a
matrix-free iterative procedure such as GMRES, relying on effi-
cient matrix–vector products. In addition, matrix-based itera-
tive solvers frequently face significant memory bandwidth con-
straints on modern processors in the high-order finite element
context [51]. Methods that utilize less memory can be more
efficient for matrix–vector products, even if they involve more
arithmetic operations. Moreover, a relatively small memory sizes
might enable the matrix inside the iterative solver to fit into
caches, which might then help performance, because operations
with the system matrix are usually limited by the memory band-
width, not the arithmetic compute performance.

Finally, Δ𝑄
 𝑖 and Δ𝑈

 𝑖 are obtained from Δ𝑈
Γ

𝑖 in Lines 7–10,
where Δ𝑈

 𝑖 is derived from Equation (29a), and Δ𝑄
 𝑖 is derived

ALGORITHM 1 | Solution procedure on each macro-element asso-
ciated with one parallel process.

1: n←Current process
2: for 

𝑖
∈  𝑛

ℎ
do

3: b̂


𝑖

← Vector contribution from 𝑄


𝑖 , 𝑈


𝑖 , 𝑈
Γ

𝑖

4: b̂ ← Assemble b̂


𝑖 for all 
𝑖
∈  𝑛

ℎ

5: end for
6: Δ𝑈 ← Matrix-free iterative solve Â Δ𝑈 = b̂
7: for 

𝑖
∈  𝑛

ℎ
do

8: Δ𝑄


𝑖 ←
(

A𝑖

qq

)−1(
−𝑅


𝑖

𝑄
−A𝑖

quΔ𝑈


𝑖 −A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)
.

9:
Δ𝑈


𝑖 ←

(
S𝑖

)−1
[(

A𝑖

uq

(
A𝑖

qq

)−1
𝑅


𝑖

𝑄
−𝑅


𝑖

𝑈

)

+
(
−A𝑖

𝑢𝑢̂
Δ𝑈

Γ
𝑖 +A𝑖

uq

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)]
.

10: end for

from Equation (29b). We note that the procedures local to each
macro-element can, but do not have to be implemented in a
matrix-free fashion, as the corresponding matrices are compar-
atively small.

Algorithm 2 outlines an efficient matrix-free matrix–vector prod-
uct, Equation (28a). The vector Δ𝑈 contains all degrees of free-
dom on the macro-element interfaces 𝜀. The degrees of freedom
on each interior interface 𝑒 ∈ 𝜀 will be operated on by Â

+ and
Â
− . We adopt the notation ± to denote the macro-elements on

the left and right side of an interface. Lines 6–8 constitute the iter-
ations of the matrix-free algorithm that are performed for each
macro-element, 

𝑖
, in parallel, in the following four steps:

1. 𝑦1 =
(
−A𝑖

𝑢𝑢̂
Δ𝑈

𝛤
𝑖 +A𝑖

uq

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

𝛤
𝑖

)

2. 𝑦2 =
(
S𝑖

)−1
𝑦1

3. 𝑦3 =
(

A𝑖

𝑢̂𝑢
−A𝑖

𝑢̂𝑞

(
A𝑖

qq

)−1
A𝑖

qu

)
𝑦2

4. 𝑦4 = 𝑦3 +
(

A𝑖

𝑢̂𝑢̂
Δ𝑈

𝛤
𝑖 −A𝑖

𝑢̂𝑞

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

𝛤
𝑖

)

Steps 1, 3, and 4 act on the global system, whereas Step 2 oper-
ates on the local system. Step 4 involves a reduction that relies
on the data associated with the mesh skeleton faces and data
from macro-elements, and thus requires communication among
processors.

Algorithms 1 and 2 together constitute the complete algorith-
mic procedure for performing a macro-element HDG solve,
storing only the reference-to-physical macro-element transfor-
mation data, the inverse Schur complements

(
S𝑖

)−1, and the
right-hand-side vector b̂.

We maintain the matrix-free nature of our approach by avoiding
the storage of the local matrix S𝑖 , even though local matrices
are stored patch-wise on macro-elements rather than on individ-
ual elements [52]. This is a critical distinction from the “HDG
compact matrix-free” approach [17], which uses an alternative

ALGORITHM 2 | Distributed matrix-free procedure for the
matrix-vector product Â Δ𝑈 .

1: y ← 0
2: n←Current processor
3: for 

𝑖
∈  𝑛

ℎ
do

4: 𝜀 ← Extract global DOF indices on 𝜕
𝑖

5: Δ𝑈
Γ

𝑖 ← Δ𝑈 [𝜀]
6: y[𝜀] ← y[𝜀]

7:
+
(

A𝑖

𝑢̂𝑢
−A𝑖

𝑢̂𝑞

(
A𝑖

qq

)−1
A𝑖

qu

)(
S𝑖

)−1

(
−A𝑖

𝑢𝑢̂
Δ𝑈

Γ
𝑖 +A𝑖

uq

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)

8: +
(

A𝑖

𝑢̂𝑢̂
Δ𝑈

Γ
𝑖 −A𝑖

𝑢̂𝑞

(
A𝑖

qq

)−1
A𝑖

𝑞𝑢̂
Δ𝑈

Γ
𝑖

)

9: end for
10: Δ𝑈 ← y
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condensation technique on elements to enhance efficiency. As
shown in analyses from References [25, 52] and results from
matrix-free variants of CG/HDG methods [17], storing the
global matrix is far less efficient than storing local matrices
element-wise. This is why our method avoids using a global
matrix. While our approach shares similarities with methods in
frameworks such as Nektar++, deal.II, MFEM, and CEED, our
key innovation lies in how we handle local matrices. Specifically,
we avoid explicitly computing these matrices on elements. We
refer readers interested in further details on the matrix-free
implementation for the macro-element HDG method to our
earlier paper [25] which specifically focuses on this aspect.

4.2 | Preconditioning Methods

In this work, we consider two options for solving the global lin-
ear system (24). The first and straightforward one solves the lin-
ear system in parallel using the restarted GMRES method [53]
with iterative classical Gram-Schmidt (ICGS) orthogonalization.
In order to accelerate convergence, a left preconditioner is used by
the inverse of the block matrix A

𝑢̂𝑢̂
. We emphasize that the matrix(

A
𝑢̂𝑢̂

)−1 is never actually computed. Since all blocks A𝑖

𝑢̂𝑢̂
are pos-

itive definite and symmetric, we compute and store its Cholesky
factorization in-place.

In the second option, we use an iterative solver strategy, where
we use a flexible implementation of the GMRES (FGMRES)
method for our spatial discretization scheme. One notable dif-
ference between FGMRES and the standard GMRES algorithm
is that FGMRES can improve memory efficiency by fully uti-
lizing vectors that are not actively used in a given iteration.
These unused vectors can, for instance, be leveraged to compute
a preconditioned vector through an additional GMRES run,
thereby optimizing resource usage [54]. We note that within
matrix-free approaches such as the one followed here, multilevel
algorithms have emerged as a promising choice to precondition
a flexible GMRES solver, see for example the reference [54].
This methodology has demonstrated success when applied for
compressible flow problems [55–58] and incompressible flow
problems [59–61]. In this regard, we use the FGMRES itera-
tion, where GMRES itself is employed as a preconditioner, and a
GMRES approach, where the inverse of the global matrix

(
A

𝑢̂𝑢̂

)−1

is employed as a preconditioner. We note that we determine this
inverse in the same way as above via a matrix-free Cholesky fac-
torization. We note that preconditioned iterative solvers become
more effective as the time step size of the discretization increases,
which implies that the condition number increases.

For a macro-element HDG mesh consisting of 𝑁
Mcr

macro-elements, the preconditioner is applied to the matrix
A𝑖

𝑢̂𝑢̂
corresponding to each macro-element, which contains 𝑁

Mcr

local matrices. It is important to note that while the global solver
considers the entire domain, the preconditioning method is
applied only to the macro-element entities. For further details,
we refer to Section 3.3.2 of our previous paper [25].

4.3 | Computational Setup

We implement our methods in Julia,1 by means of element for-
mation routines. In the context of the local solver, the associated

tasks involve the assembly of local matrices, the computation
of local LU factorizations of S𝑖 , and the extraction of local val-
ues from the global solution. We use FGMRES/GMRES iterative
methods for the global solver provided by the open-source library
PETSc.2 Motivated by the very small size of the matrices on each
element, we employ the dense linear algebra from the LAPACK
package3 for the standard HDG method. The matrices for the
macro-element HDG method are larger and therefore we utilize
sparse linear algebra provided by the UMFPACK library [62].

Our implementation has been adapted to the parallel com-
puting environment Lichtenberg II (Phase 1), provided by the
High-Performance Computing Center at the Technical Univer-
sity of Darmstadt. It was compiled using GCC (version 9.2.0),
Portable Hardware Locality (version 2.7.1), and OpenMPI (ver-
sion 4.1.2). Our computational experiments were conducted on
this cluster system, utilizing multiple compute nodes. Each com-
pute node features two Intel Xeon Platinum 9242 processors,
each equipped with 48 cores running at a base clock frequency
of 2.3 GHz. Additionally, each compute node provides a main
memory capacity of up to 384 GB. For more detailed information
about the available compute system, please refer to the Lichten-
berg webpage.4

5 | Numerical Results

In the following, we will demonstrate the computational advan-
tages of our macro-element HDG approach for compressible
flow problems, in particular in comparison with the standard
HDG method. Our numerical experiments encompass several
three-dimensional test cases that include steady and unsteady
flow scenarios. Here we consider the DIRK (3,3) scheme for
the discretization in time. We conduct a comprehensive com-
parative analysis in terms of accuracy, number of iterations (all
time steps), computing times (wall time for all time steps), and
required number of degrees of freedom in the local/global solver,
with a particular focus on the parallel implementation.

Remark 5. We will use the parameter 𝑚 to denote the num-
ber of C0-continuous elements along each macro-element edge.
Therefore, the parameter 𝑚 defines the size of the mesh of
C0-continuous elements in each tetrahedral macro-element. For
𝑚 = 1, we obtain the standard HDG method.

5.1 | Compressible Couette Flow

To demonstrate our method for a simple example and to illustrate
its optimal convergence, we consider the problem of steady-state
compressible Couette flow with a source term [9, 63] on a
three-dimensional cubic domain Ω =

(
𝑥1, 𝑥2, 𝑥3

)
= (0, 1)3. The

analytical expression of the axis-aligned solution is:

𝑣1 = 𝑥2 log
(
1 + 𝑥2

)
(30a)

𝑣2 = 0 (30b)

𝑣3 = 0 (30c)

𝑇 = 𝑇∞

(
𝛼

𝑐
+ 𝑥2

(
𝛽

𝑐
− 𝛼

𝑐

)
+ 𝛾 − 1

2𝛾𝜌∞
Pr 𝑥2

(
1 − 𝑥2

))
(30d)
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where we assume the following parameters: 𝛼
𝑐
= 0.8, 𝛽

𝑐
= 0.85,

𝛾 = 1.4, 𝑇∞ = 1∕(1 − 𝛾)𝑀2
∞, and Pr = 0.71. In addition, the Mach

number is taken as 𝑀∞ = 𝑣∞∕𝑐∞ = 0.15, where 𝑐∞ is the speed
of sound corresponding to the temperature 𝑇∞ and 𝑣∞ is infinity
velocity. The viscosity is assumed constant and the source term,
𝕊, which is determined from the exact solution, is given by

𝕊 = −1
Re

{

0,
2 + 𝑥2

(
1 + 𝑥2

)2 , 0, 0, log2(1 + 𝑥2
)
+

𝑥2 log
(
1 + 𝑥2

)

1 + 𝑥2

+
𝑦
(
3 + 2𝑥2

)
log

(
1 + 𝑥2

)
− 2𝑥2 − 1

(
1 + 𝑥2

)2

}𝑡

(31)

While the exact solution is independent of the Reynolds number
Re = 𝜌∞𝑣∞𝐿∕𝜇∞ = Re

𝑐∞
𝑀∞, we set it to 1 in order to replicate

the case presented in References [9, 63], taking a characteristic
length of 𝐿 = 1.

Figure 2b plots the exact solution 30 in the 𝑥1 − 𝑥2 that corre-
sponds to the source term 31. We consider polynomial orders
𝑝 = 1 to 𝑝 = 5 and consider meshes as shown in Figure 2a, where
we choose the number 𝑚 of elements along a macro-element edge
in each direction to be two. In Figure 3a,b, we plot the error in the
𝐿

2 norm versus the element size under uniform refinement of the
macro-elements for velocity and energy, respectively. We observe
that we achieve the optimal convergence rate 𝑝 + 1 in all cases.

FIGURE 2 | Compressible Couette flow on a unit cube. (a) 3D structured mesh. (b) Exact solution in x1 − x2 plane. [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 | Couette flow: Convergence of the macro-element HDG method with 𝑚 = 2. (a) Velocity, ||v1ℎ
− v1||L2(Ω). (b) Energy, ||𝜌E

ℎ
− 𝜌E||L2(Ω).

[Colour figure can be viewed at wileyonlinelibrary.com]
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5.1.1 | Computational Performance for a Fixed
Global Mesh Size

To assess the performance of the local and global solvers
with respect to a change in the number of elements 𝑚 per
macro-element, we consider a discretization of the cube with
768 elements with polynomial degree 𝑝 = 3 that we apply
to the current problem. We compute in parallel on 12 pro-
cessors. We compare the standard HDG method (𝑚 = 1) ver-
sus the macro-element HDG method with eight elements per
macro-element (𝑚 = 2) and 64 elements per macro-element (𝑚 =
4). Each HDG variant uses the same overall mesh of 𝑁

Elm =
768 elements to discretize the cube, only changing the number
of macro-elements, 𝑁

Mcr. In Table 1, we report the number of
degrees of freedom for the global problem for 𝑚 = 1 (standard
HDG method), 𝑚 = 2 and 𝑚 = 4 (macro-element HDG method).
In Table 2, we report the time and number of iterations of the
FGMRES method, where we use a drop tolerance of 10−12. In
addition, we compare for each HDG variant a GMRES linear
solver approach versus a FGMRES linear solver approach, where
both variants use the

(
A

𝑢̂𝑢̂

)−1 preconditioner for the GMRES
solver as described above.

As for the nonzero elements in the matrices, we note that the
number of nonzeros in the local matrices increases with larger
values of 𝑚. For further details, we refer to Section 5.1 of our pre-
vious paper [25]. From an operational standpoint, this suggests
that the macro-element HDG method might be less efficient
than the standard HDG method. However, this analysis does
not account for several further factors that could be crucial. The
standard HDG method requires more inter-processor commu-
nication due to a significantly higher number of local problems.
Furthermore, the number of iterations needed to solve the global
problem is generally much lower for the macro-element variant.
Consequently, in Table 2, we focus solely on local operations,
global operations, and the number of iterations to determine the
optimal 𝑚.

We see that in both variants of the linear solver considered here,
the computing time required for the local solver increases when
𝑚 is increased. This increase is expected as the number of degrees

of freedom in the local solver increases. We observe that the FGM-
RES approach is more efficient than the GMRES approach for all
HDG variants. The decrease in the local and global computing
time is even larger for the macro-element HDG methods than for
the standard HDG method. We can also see that compared to the
standard HDG method (𝑚 = 1), the global solver operations can
be significantly reduced for the macro-element HDG variants
with increasing 𝑚. We note that this is the opposite when the
GMRES linear solver is employed. Based on this observation,
we will focus on the FGMRES solver in the remainder of
this study.

5.1.2 | Computational Performance for a Fixed
Number of Local Unknowns Per Macro-Element

In the next step, we test the HDG variants for a fixed number of
local unknowns that we choose as doflocal

𝑖
= 3,300. We focus on

investigating the performance of one- and two-level static con-
densation in conjunction with FGMRES iterations. To this end,
instead of keeping the number of processors fixed, we switch to
a variable number of processors, but keep the ratio of the num-
ber of macro-elements to the number of processors fixed at one
(macro-elements/proc.’s= 1). The macro-element HDG method
combines patches of eight (𝑚 = 2), 64 (𝑚 = 4) or 512 (𝑚 = 8)
𝐶

0-continuous tetrahedral elements into one macro-element. To
always obtain the same number of local unknowns doflocal

𝑖
, we

adjust the polynomial degree 𝑝 in such a way that the product of
𝑚 and 𝑝 is always mp = 8. Consequently, with an increase in the
macro-element size 𝑚, the polynomial order 𝑝 decreases. Table 3
reports the number of degrees of freedom for two of the meshes

TABLE 3 | Couette flow: Number of local and global unknowns at a
constant number of local unknowns per macro-element.

doflocal dofglobal doflocal
𝒊

𝑁
Mcr = 12 39,600 6750 3300

𝑁
Mcr = 44 145,200 25,200 3300

Note: We report values for two different meshes with 12 and 44 macro-elements,
which hold for the pairs (𝑚, 𝑝) = (2, 4), (𝑚, 𝑝) = (4, 2), and (𝑚, 𝑝) = (8, 1).

TABLE 1 | Couette flow: Number of local and global unknowns for 𝑝 = 3 and varying 𝑚 on a fixed global mesh.

doflocal (total) dofglobal doflocal
𝒊

(per macro-element)

𝒎 = 1 𝒎 = 2 𝒎 = 4 𝒎 = 1 𝒎 = 2 𝒎 = 4 𝒎 = 1 𝒎 = 2 𝒎 = 4

𝑁
Elm = 768 307,200 161,280 109,200 81,600 30,240 13,650 400 1680 9100

TABLE 2 | Couette flow: We compare the time for the local solver and the local part of the matrix-free global solver (Step 2) versus the time for the
remaining parts of the global solver (residual drop 10−12).

Time local op’s [s] Time global op’s [s] # Newton iterations

𝒎 = 1 𝒎 = 2 𝒎 = 4 𝒎 = 1 𝒎 = 2 𝒎 = 4 𝒎 = 1 𝒎 = 2 𝒎 = 4

GMRES 11.1 15.4 120.1 27.3 15.1 58.9 199 160 160
FGMRES 8.6 5.2 26.6 20.6 4.5 10.1 56 50 49

Note: We use standard HDG (𝑚 = 1) versus macro-element HDG (𝑚 = 2, 4) (all with 𝑝 = 3, GMRES preconditioner
(
A

𝑢̂𝑢̂

)−1, proc.’s= 12).
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with 12 and 44 macro-elements that we generated by uniformly
refining the initial mesh given in Figure 7.

Table 4 reports the computing time for the local operations and
the time for the global operations with increasing number of ele-
ments per macro-element, parametrized by 𝑚. As we use the same
preconditioner, the number of Newton iterations in the static
condensation and alternative second-layer static condensation
approaches are practically the same. We note that the large num-
ber of iterations is not uncommon in the present case, as we solve
a steady-state problem with a matrix-free method and a precon-
ditioner that can only use the locally available part of the matrix
[60, 64]. We observe that as 𝑚 increases, the number of iterations
decreases, despite the constant number of degrees of freedom in
the local/global solver. This phenomenon can be attributed to the
change in structure of the global matrices, leading to improved
conditioning. Due to the reduced number of iterations, the time
required for both local and global operations is reduced. When
looking at the results of Table 4, it is important to keep in mind
that a change in 𝑚 also involves a change in 𝑝. The variation
in polynomial order, however, strongly influences the accuracy
of the approximate solution. Table 5 presents the approximation
error corresponding to different values of 𝑝 for the number of
degrees of freedom reported in Table 3. We observe that with
increasing the polynomial degree, we obtain a significantly better
accuracy.

5.2 | Laminar Compressible Flow Past a Sphere

In the next step, we consider the test case of laminar compress-
ible flow past a sphere at Mach number 𝑀∞ = 0.1 and Reynolds
number Re = 100. At these conditions, we expect a steady state
solution with a large toroidal vortex formed just aft of the sphere.
As we would like to arrive at the steady-state solution in a

computational efficient manner, we would like to choose an
implicit time integration scheme with a large time step, resulting
in a large CFL number (in our case in the order of 105). The
computational mesh, shown in Figure 4, consists of 139,272
tetrahedral elements at moderate polynomial order 𝑝 = 3. We
compare the standard HDG method, where all 139,272 ele-
ments are discontinuous, and the macro-element HDG method
with 𝑚 = 2 that uses the same elements grouped into 17,409
discontinuous macro-elements.

Figure 5 illustrates the solution characteristics of the problem
achieved with the macro-element HDG method in terms of the
streamlines and the Mach number. We expect that as both meth-
ods use the same mesh at the same polynomial degree, they also
achieve practically the same accuracy. This assumption is sup-
ported by Table 6, where we report the values obtained with
our matrix-free implementation of the two HDG variants for the
length of the ring vortex, 𝑥

𝑠
, and the angle 𝜃

𝑠
at which separation

occurs. We observe that both HDG variants produce values that
agree well with each other as well as commonly accepted values
reported in the literature [65, 66].

Table 7 reports the number of degrees of freedom for the
mesh shown in Figure 5 and polynomial degree 𝑝 = 3. Both
HDG variants use the same mesh, where the standard HDG
method assumes fully discontinuous elements (𝑚 = 1) and the
macro-element HDG method combines groups of eight tetrahe-
dral elements (𝑚 = 2) into one 𝐶

0 continuous macro-element. We
observe that the macro-element HDG variant, with increasing 𝑚,
significantly reduces the total amount of degrees of freedom in
both the local and global problems.

We observe that the macro-element HDG method exhibits a
notable speed advantage, primarily reducing the time for the
global solver, while the time for the parallelized local solver

TABLE 4 | Couette flow: We compare the time for the local solver and the local part of the matrix-free global solver (Step 2) versus the time for the
remaining parts of the global solver (residual drop 10−12, number of macro-elements 𝑁

Mcr/proc.’s= 1).

(𝒎, 𝒑)

Time local op’s [s] Time global op’s [s] # iterations

(2, 4) (4, 2) (8, 1) (2, 4) (4, 2) (8, 1) (2, 4) (4, 2) (8, 1)

Static condensation
𝑁

Mcr = 12 2.3 1.9 1.6 1.7 1.4 1.2 4481 3452 2984
𝑁

Mcr = 44 4.4 3.4 3.3 4.3 3.2 3.4 10,314 8.137 7710

Second-layer static condensation
𝑁

Mcr = 12 0.6 0.5 0.4 1.3 0.9 0.7 4481 3452 2984
𝑁

Mcr = 44 1.1 0.9 0.8 3.2 2.2 1.9 10,314 8.137 7710

TABLE 5 | Couette flow: Mass, velocity, and energy error in the 𝐿
2-norm for different (𝑚, 𝑝) and number of macro-elements 𝑁

Mcr.

(𝒎, 𝒑)

∥ 𝝆
𝒉
− 𝝆 ∥

𝑳
2(𝛀) ∥ 𝒗1𝒉 − 𝒗1 ∥𝑳2(𝛀) ∥ 𝝆𝑬

𝒉
− 𝝆E ∥

𝑳
2(𝛀)

(2, 4) (4, 2) (8, 1) (2, 4) (4, 2) (8, 1) (2, 4) (4, 2) (8, 1)

𝑁
Mcr = 12 1.72e-6 6.71e-5 6.41e-4 7.05e-6 2.21e-4 1.67e-3 1.13e-4 4.30e-3 4.15e-2

𝑁
Mcr = 44 1.37e-7 1.52e-5 2.22e-4 8.90e-7 6.40e-5 9.15e-4 8.94e-6 9.43e-4 1.40e-2

Note: Subscript ℎ denotes the numerical solution and no subscript denotes the exact solution.
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FIGURE 4 | Flow past a sphere: Cut halfway through the unstructured mesh, adaptively refined around the sphere in the center. (a) Element mesh.
(b) Macro-element mesh. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 | Flow past a sphere at Re = 100 and 𝑀∞ = 0.1, computed on the mesh shown in Figure 4 at 𝑝 = 3. (a) 3D streamlines, toroidal vortex
aft of the sphere. (b) Mach number contours. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 | Predicted length of the ring vortex and separation angle for flow past sphere at 𝑀∞ = 0.1 and Re = 100.

Author(s) Method 𝒙
𝒔

𝜽
𝒔

Taneda [66] Experimental 0.89 127.6
Johnson & Patel [65] Finite volume method 0.88 126.6
Our matrix-free implementation HDG 0.87 128.1
Our matrix-free implementation Macro-element HDG 0.86 127.8

TABLE 7 | Flow past a sphere: We compare the time for the local solver and the local part of the matrix-free global solver (Step 2) versus the time
for the remaining parts of the global solver for 𝑝 = 3 and Pro𝑐

′
𝑠 = 2,048 (on the mesh shown in Figure 4).

Time local op’s [min] Time global op’s [min] doflocal dofglobal

𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2

5.38 6.34 83.6 26.6 55,708,800 29,247,120 14,123,600 5,012,000
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remains at the same level. In the macro-element HDG method,
computation time thus shifts from the global solver to the local
solver, enhancing parallelization efficiency. Therefore, the time
ratio between the local and global solver is thus reduced from
approximately 16 in the standard HDG method to approxi-
mately four in the macro-element HDG method at 𝑚 = 2. This
example demonstrates that at moderate polynomial degrees such
as 𝑝 = 3, where the standard HDG method is typically not effi-
cient, subdivision of one tetrahedral hybridized DG element
into a macro-element with just eight 𝐶

0 continuous elements
already leads to a practical advantage in terms of computational
efficiency.

5.3 | Viscous Subsonic Flow Over NACA 0012
Airfoil

As the Mach numbers of the previous benchmark tests are rel-
atively low for compressible flow, we now consider the test
case of subsonic viscous flow around a NACA0012 airfoil. It
clearly requires compressible flow equations, as the free-stream
Mach and Reynolds numbers are 𝑀∞ = 0.5 and Re = 5,000
with zero angle of attack. Zero heat flux (adiabatic) and no
slip boundary conditions are imposed on the walls of the air-
foil geometry. The flow is both steady and symmetric with
respect to the stagnation stream line. However, flow separa-
tion occurs near the trailing edge, resulting in the formation of
small re-circulation bubbles on the upper and lower surfaces of
the airfoil that extend into the near-wake region and present
numerical challenges for the accurate numerical prediction of the
airfoil drag.

The computational mesh shown in Figure 6b consists of 15,360
triangle elements with polynomial order 𝑝 = 3. We compare
the standard HDG method, where all 15,360 elements are dis-
continuous, and the macro-element HDG method with 𝑚 = 2
that uses the same elements grouped into 3840 discontinuous
macro-elements shown in Figure 6a. Figure 6c depicts the Mach
number contours that were computed with on the macro-element
HDG mesh with 𝑝 = 3 and 𝑚 = 2. The re-circulation bubbles that
appear as regions of low Mach number in the trailing-edge are
plotted in Figure 6d. To evaluate accuracy, we compare our results
with reference solutions for the pressure drag (𝐶

𝐷,𝑝
= 0.0227), the

viscous drag (𝐶
𝐷,𝑓

= 0.0327), and the separation point location
(𝑥

𝑠
∕𝑐 = 0.81), derived from a fourth-order accurate method uti-

lizing a grid of 65,536 cells [67]. The relative errors of the results
obtained from our macro-element HDG method with 𝑝 = 3 and
𝑚 = 2 (𝐶

𝐷,𝑝
= 0.0225, 𝐶

𝐷,𝑓
= 0.0331, and 𝑥

𝑠
∕𝑐 = 0.814) and the

reference solution are 0.4%, 0.3%, and 0.09% for the pressure drag
coefficient, the viscous drag coefficient, and the separation point,
respectively. Since both the macro-element HDG and standard
HDG methods use the same mesh and polynomial degree, they
exhibit comparable accuracy.

Table 8 presents the number of degrees of freedom correspond-
ing to the standard HDG mesh and the macro-element HDG
mesh depicted in Figure 6a,b. Both HDG variants use the same
elements. However, in the standard HDG method, the elements
are fully discontinuous (𝑚 = 1), while in the macro-element
HDG method, four triangular elements are grouped together to
form one 𝐶

0 continuous macro-element (𝑚 = 2). It can be seen

that the macro-element HDG approach results in a reduction
in the total number of degrees of freedom in both the local and
global problems. Additionally, the macro-element HDG method
demonstrates a significant advantage in computational speed,
particularly in reducing the time required for solving the
global problem. For moderate polynomial degrees, such as
𝑝 = 3, the global solver time for the macro-element HDG
method with 𝑚 = 2 is approximately an order of magnitude
faster than that of the standard HDG method. This improve-
ment is partly due to a reduction in the number of iterations,
from 6592 to 1997. Consequently, in the macro-element HDG
approach, the computational time shifts from the global solver
to the local solver, increasing the efficiency of parallelization.
As a result, the ratio of time spent between the local and
global solvers is reduced from approximately 15 in the stan-
dard HDG method to around half in the macro-element HDG
method with 𝑚 = 2. This example illustrates that for moderate
polynomial degrees such as 𝑝 = 3, where the standard HDG
method is typically inefficient, subdividing a single hybridized
DG triangle element into a macro-element consisting of just
four C0-continuous elements offers a clear computational
advantage.

5.4 | Compressible Taylor–Green Vortex

As the final benchmark, we consider the Taylor–Green vortex
flow [68–70] on a cube [−𝜋L, 𝜋L]3. We prescribe periodic bound-
ary conditions in all coordinate directions, assume 𝑀0 = 0.1, and
use the following initial conditions:

𝑣1(x, 𝑡 = 0) = 𝑉0 sin
(

𝑥1
𝐿

)
cos

(
𝑥2
𝐿

)
cos

(
𝑥3
𝐿

)

𝑣2(x, 𝑡 = 0) = −𝑉0 cos
(

𝑥1
𝐿

)
sin

(
𝑥2
𝐿

)
cos

(
𝑥3
𝐿

)

𝑣3(x, 𝑡 = 0) = 0

𝑃 (x, 𝑡 = 0) = 𝑃0 +
𝜌0𝑉

2
0

16

(
cos

(
2𝑥1
𝐿

)
+ cos

(
2𝑥2
𝐿

))(
cos

(
2𝑥3
𝐿

)
+ 2

)

(32)

where 𝐿 = 1, 𝜌0 = 1, and 𝑃0 = 1∕𝛾 . The flow is initialized to
be isothermal, that is, 𝑃∕𝜌 = 𝑃0∕𝜌0. The flow is computed
at two Reynolds numbers, which are Re = 100 and Re = 400.
The unsteady simulation is performed for a duration of 15𝑡

𝑐
,

where 𝑡
𝑐
= 𝐿∕𝑉0 is the characteristic convective time, 𝑉0 =

𝑀0𝑐0, and 𝑐0 is the speed of sound corresponding to 𝑃0 and
𝜌0, 𝑐

2
0 = 𝛾𝑃0∕𝜌0.

5.4.1 | Macro-Element HDG Discretization

We employ our macro-element HDG scheme with mp = 8, that
is, the polynomial degrees chosen are 𝑝 = 4 for 𝑚 = 2 and 𝑝 = 2
for 𝑚 = 4. The corresponding effective resolutions of the cube are
denoted as 𝑁eff =

(
𝑁ele,1d ⋅ (mp + 1)

)3, where 𝑁ele,1d denotes the
number of macro-elements in one spatial direction, see Figure 7
for an illustration. We adjust the effective resolution of the mesh
according to the Reynolds number. In our case, we employ 𝑁eff =
543 for Re = 100, and 𝑁eff = 993 for 400. Figure 7 illustrates the
two macro-element HDG meshes for 𝑚 = 2, where the edges of
the discontinuous macro-elements are plotted in black and the
edges of the 𝐶

0-continuous elements within each macro-element
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FIGURE 6 | Viscous subsonic flow around a NACA0012 airfoil. (a) Macro-element mesh. (b) Corresponding finite elements for m= 2 (discontinuous
across macro-element interfaces). (c) Mach number contours. (d) Laminar separation bubble. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 8 | Viscous subsonic flow over NACA 0012 airfoil: We compare the time for the local solver and the local part of the matrix-free global solver
(Step 2) versus the time for the remaining parts of the global solver for 15,360 elements and Pro𝑐

′
𝑠 = 96.

Time local op’s [s] Time global op’s [s] doflocal dofglobal # iterations

𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2 𝒎 = 1 𝒎 = 2

7.4 9.8 112.4 15.8 1,843,200 1,290,240 371,648 163,912 6592 1997

are plotted in black. In Table 9, we report the number of degrees
of freedom for both local and global problems, along with the cor-
responding number of processes, for the two Reynolds numbers
under consideration.

We set the time step such that a CFL number of the order of one
is maintained, which represents the relation between the convec-
tive speed, the resolution length and the time scale. Specifically,
we use a time step of
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FIGURE 7 | Taylor–Green vortex: Unstructured meshes of the cube for 𝑚 = 2. (a) Mesh for Re= 100. (b) Mesh for Re= 400. [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 9 | Taylor–Green vortex: Number of local and global unknowns for mp = 8 at two different mesh resolutions for Re = 100 and Re = 400.

Mesh #degrees of freedom

𝑵ele,1𝒅 𝑵eff 𝑵
Mcr doflocal dofglobal

Re = 100 6 543 1592 5,253,600 716,400
Re = 400 11 993 10,143 33,471,900 4,564,350

Δ𝑡 = CFL ℎ

𝑉0(𝑝 + 1)
(33)

where ℎ is the characteristic element length and 𝑝 is the polyno-
mial of order. For this test case, our solution approach is used with
absolute solver tolerance of 10−12 and relative solver tolerance
of 10−6.

5.4.2 | Verification of Accuracy

We first use the Taylor–Green vortex benchmark to investigate
the accuracy that we can obtain with our macro-element HDG
method. In terms of discretization accuracy and from a physical
perspective, the focus lies on the kinetic energy dissipation rate,
illustrated in Figure 8. In this context, the kinetic energy dissipa-
tion rate, 𝜀, is exactly equal to

𝜀 = 2 𝜇

Ω ∫Ω
𝜌

𝜔 ⋅ 𝜔
2

𝑑𝛺 (34)

for incompressible flow and approximately for compressible flow
at low Mach number. The vorticity, 𝜔, is defined as 𝜔 = ∇ ×
𝑉 in (34). We consider the time range 0 ≤ 𝑡∕𝑡

𝑐
≤ 15 and the

two Reynolds numbers Re = 100 and Re = 400. The obtained
results will be compared against a reference incompressible flow
solution [43].

The temporal evolution of the flow field is illustrated through iso-
contours of vorticity magnitude, specifically 𝐿∕𝑉0⋅ ∣ 𝜔 ∣= 1.0, as
shown in Figure 9 for the case of Re = 100, computed with the
macro-element HDG method with the shown mesh and (𝑚, 𝑝) =
(4, 2). In the early stages, corresponding to the initial time, the
large-scale vortex structures initiate their evolution and exhibit
a rolling-up phenomenon. Around the non-dimensional time
instant 𝑡∕𝑡

𝑐
= 6, the smooth vertical structures give rise to more

coherent formations, and by approximately 𝑡∕𝑡
𝑐
= 9, these coher-

ent structures commence breaking down. Also, a snapshot of
the vorticity magnitude ∣ 𝜔 ∣ on the periodic plane 𝑥 = 𝜋L, com-
puted with (𝑚, 𝑝) = (4, 2) at the non-dimensional time instants
𝑡∕𝑡

𝑐
= 3.0,9.0,12.0 and Re = 100 is plotted in Figure 10. We con-

clude from our results that for the benchmark at the chosen
parameters, the macro-element HDG method delivers very good
accuracy with the chosen mesh resolution and the polynomial
degrees.

5.4.3 | Assessment of Computational Efficiency

In the next step, we investigate the computational efficiency of
the macro-element HDG method for the chosen meshes and
polynomial degrees. In Table 10, we report the time and number
of iterations for the FGMRES linear solver with second-layer
static condensation. In particular, we compare timings of
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FIGURE 8 | Taylor–Green vortex: Time evolution of kinetic energy dissipation rates, computed for Re = 100 and Re = 400 on the two different
meshes shown in Figure 7 with (𝑚, 𝑝) = (2, 4) and (𝑚, 𝑝) = (4, 2).

the macro-element HDG method with eight elements per
macro-element (𝑚 = 2) and the macro-element HDG method
with 64 elements per macro-element (𝑚 = 4). We observe that for
both mesh resolutions considered here, the computational time
required for the global solver decreases as 𝑚 is increased. This
reduction can be expected since the number of FGMRES itera-
tions decreases and the structure of the global matrix changes.
We note that this reduction becomes more pronounced with the
increase of the mesh resolution for the higher Reynolds number
Re = 400. This improvement can be attributed to an improved
performance of our macro-element HDG implementation for
larger mesh sizes and the deployment of a larger number of
parallel processes.

We then compare the time evolution of kinetic energy dissipa-
tion rates of the two macro-element HDG variants with ℎ refine-
ment, see Figure 11. This comparison is based on computing
time for both local and global operations, as well as the num-
ber of FGMRES iterations. We compute our example at Re = 100,
and transition to a variable number of processors while main-
taining a fixed ratio of the number of macro-elements to the
number of processors at two (macro-elements/processors= 2).
Table 11 reports the number of degrees of freedom for a
sequence of three meshes generated by globally increasing the
number of macro-elements, 𝑁ele,1𝑑

, in each spatial direction.
Both macro-element HDG variants, which use (𝑚, 𝑝) = (2, 4) and
(𝑚, 𝑝) = (4, 2) utilize the same macro-element meshes, hence,
the same number of macro-elements 𝑁

Mcr, and exhibit the
same number of degrees of freedom. Figure 11 illustrates that
with mesh refinement, the accuracy of both macro-element
HDG variants with (𝑚, 𝑝) = (2, 4) and (𝑚, 𝑝) = (4, 2) improves and
approaches the DNS reference solution. We observe a slight accu-
racy advantage of the macro-element HDG method that uses
(𝑚, 𝑝) = (4, 2), in particular for the coarsest macro-element mesh
(Mesh 1).

Table 12 compares the time for the local parts of the solver and
the remaining parts of the global solver, and also reports the num-
ber of FGMRES iterations for each case. We observe that at a
fixed number of degrees of freedom, using 64 C0-continuous ele-
ments within each macro-element at 𝑝 = 2 is results in a signif-
icant reduction in computing time in comparison to using just
8 C0-continuous elements per macro-element at a higher poly-
nomial degree of 𝑝 = 4. An essential factor contributing to this
reduction is the improved conditioning of the smaller system,
leading to a substantial decrease in the required number of itera-
tions for the FGMRES solver. For the largest mesh with an effec-
tive resolution of 𝑁eff = 543, the time for the global operations
in the macro-element HDG method with 𝑚 = 4 is approximately
a factor of two smaller than that of the macro-element HDG
method with 𝑚 = 2, primarily due to the reduction in the number
of iterations from 3863 to just 2314.

Moreover, we observe that for 𝑚 = 4, the ratio between the
computing times for local and global operations is closer to
the desired optimum of one. Consequently, we conclude that
the macro-element HDG method with a larger number of
C0-continuous elements per macro-element, owing to its flexi-
bility in adjusting the computational load per macro-element,
in general achieves a better balance between local and global
operations. This observation indicates that for very large systems,
larger macro-elements (at a lower polynomial degree) are prefer-
able to balance local and global operations, leading to the fastest
computing times for the overall problem.

6 | Summary and Conclusions

In this paper, we focused on the macro-element variant of the
HDG method and investigated its performance in the anal-
ysis of steady and unsteady compressible flow problems at
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FIGURE 9 | Taylor–Green vortex: Isocontours of the vorticity magnitude 𝐿∕𝑉0⋅ ∣ 𝜔 ∣ = 1.0 at Re = 100, computed on the mesh shown in
Figure 7a with (𝑚, 𝑝) = (4, 2). (a) t/tc = 0.0. (b) t/tc = 3.0. (c) t/tc = 6.0. (d) t/tc = 9.0. (e) t/tc = 12.0. (f) t/tc = 15.0. [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 | Taylor–Green vortex: Snapshot of the vorticity magnitude ∣ 𝜔 ∣ at Re = 100, plotted on the periodic plane 𝑥 = 𝜋L for three
non-dimensional time instants 𝑡∕𝑡

𝑐
= 3.0,9.0,12.0, computed on the mesh shown in Figure 7a with (𝑚, 𝑝) = (4, 2). (a) t/tc = 3.0. (b) t/tc = 9.0. (c) t/tc = 15.0.

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 10 | Taylor–Green vortex: We compare the time for the local solver and the local part of the matrix-free global solver (Step 2) versus the
time for the remaining parts of the global solver for Re = 100 and Re = 400.

# Proc’s Time local op’s [min] Time global op’s [min] # iterations

(𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2) (𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2) (𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2)

Re = 100 796 7.7 4.1 18.3 8.5 3863 2314
Re = 400 5088 29.9 21.2 114.1 66.3 9604 8513

FIGURE 11 | Taylor–Green vortex: Time evolution of kinetic energy dissipation rates for Re = 100, obtained with the macro-element HDG method
and the two different (𝑚, 𝑝) pairs on the three different macro-element meshes defined in Table 11. (a) Kinetic energy dissipation rates for (m, p)= (4,
2). (b) Kinetic energy dissipation rates for (m, p)= (2, 4). [Colour figure can be viewed at wileyonlinelibrary.com]

moderate Reynolds numbers. Combining aspects of continu-
ous and hybridized discontinuous finite element discretization,
the macro-element HDG variant offers a number of advantages
compared to the standard HDG method, such as the mitigation
of the proliferation of degrees of freedom, the preservation of
the unique domain decomposition mechanism, and automatic
load-balancing inherent to the numerical method. In addition,

the macro-element HDG method is particularly well suited for a
matrix-free solution approach.

In comparison to our earlier work on scalar advection–diffusion
problems, compressible flow problems lead to significantly larger
systems of equations, due to the requirement of fine meshes with
many elements as well as due to the (𝑑 + 1) × (𝑑 + 2) degrees
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TABLE 11 | Taylor–Green vortex: Number of local and global unknowns for a sequence of three meshes, where the last one corresponds to the
mesh shown in Figure 7a.

Mesh #degrees of freedom

𝑵ele,1𝒅 𝑵eff 𝑵
Mcr doflocal dofglobal

Mesh 1 4 363 495 1,633,500 222,750
Mesh 2 5 453 955 3,151,500 429,750
Mesh 3 6 543 1592 5,253,600 716,400

Note: These values hold for both (𝑚, 𝑝) = (2, 4) and (𝑚, 𝑝) = (4, 2).

TABLE 12 | Taylor–Green vortex at Re = 100: We compare the time for the local solver and the local part of the matrix-free global solver (Step 2)
versus the time for the remaining parts of the global solver.

# Proc’s Time local op’s [min] Time global op’s [min] # iterations

(𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2) (𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2) (𝒎, 𝒑) = (2, 4) (𝒎, 𝒑) = (4, 2)

Mesh 1 248 5.0 2.8 8.3 4.2 2520 1595
Mesh 2 478 6.6 3.6 11.9 5.9 3339 1993
Mesh 3 796 7.7 4.1 18.3 8.5 3863 2314

Note: We use the macro-element HDG method with (𝑚, 𝑝) = (2, 4) and (𝑚, 𝑝) = (4, 2) (at constant ratio macro-elements/proc.’s= 2).

of freedom per basis function. We therefore explored several
computational strategies at the level of the local and the global
solver, with the aim at enhancing computational efficiency and
reducing memory requirements. For solving the local system
per macro-element efficiently, we devised a second-layer static
condensation approach that reduces the size of the local sys-
tem matrix in each macro-element and hence the factorization
time of the local solver. For solving the global system efficiently
within a matrix-free implementation, we explored the use of a
multi-level preconditioner based on the FGMRES method. Based
on the multi-level FGMRES implementation available in PETSc,
we used the iterative GMRES solver as a preconditioner, and in
the second level, we again employed the inverse of the global sys-
tem matrix computed via a matrix-free Cholesky factorization as
a preconditioner for the GMRES solver.

We demonstrated the performance of our developments via
parallel implementation of our macro-element HDG variant
in Julia and C++ that we ported on a modern heterogeneous
compute system (Lichtenberg II Phase 1 at the Technical Uni-
versity of Darmstadt, at position 253 in the TOP500 list 11/2023).
Our computational results showed that the multi-level FGM-
RES iterative solver in conjunction with the second-layer static
condensation approach indeed enhance the computational effi-
ciency of the macro-element HDG method, benefitting from
the reduction in degrees of freedom and communication across
compute nodes. Our results also confirmed that unlike standard
HDG, the macro-element HDG method is efficient for mod-
erate polynomial degrees such as quadratics, as it is possible
to increase the local computational load per macro-element
irrespective of the polynomial degree. In the context of com-
pressible flow simulations, we observed a shift in computational
workload from the global solver to the local solver. This shift
helps achieve a balance of local and global operations, enhanc-
ing parallelization efficiency as compared to our earlier work
on scalar advection–diffusion problems. We demonstrated

that—due to this balance, the reduction in degrees of freedom,
and the reduction of the global problem size and the number
of iterations for its solution—the macro-element HDG method
delivers faster computing times than the standard HDG method,
particularly for higher Reynolds numbers and mesh resolutions.
In particular, we observed that for large-scale compressible flow
computations, our macro-element variant of the HDG method
is more efficient, when it employs macro-elements with more
C0-continuous elements, but at a lower polynomial degree,
rather than using macro-elements with fewer C0-continuous
elements, but at a higher polynomial degree.

It remains to be seen how these properties demonstrated here for
moderate Reynolds numbers transfer to high-Reynolds-number
flow problems that involve turbulence. We plan to investigate
this question in the future by applying the macro-element HDG
method for the direct numerical simulation of turbulent flows
modeled via the compressible Navier–Stokes equations.
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Endnotes
1 The Julia Programming Language, https://julialang.org/https:/

/julialang.org/.
2 Portable, Extensible Toolkit for Scientific Computation, https://petsc

.org/https://petsc.org/.
3 Linear Algebra PACKage, https://netlib.org/lapack/https://netlib.org

/lapack/.
4 High performance computing at TU Darmstadt, https://www.hrz.tu

-darmstadt.de/hlr/hochleistungsrechnen/index.en.jsphttps://www.hrz
.tu-darmstadt.de/hlr/hochleistungsrechnen/index.en.jsp.
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