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One of the major challenges in finite element methods is the mitigation of spurious oscil-

lations near sharp layers and discontinuities known as the Gibbs phenomenon. In this
paper, we propose a set of functionals to identify spurious oscillations in best approxima-

tion problems in finite element spaces. Subsequently, we adopt these functionals in the
formulation of constraints in an effort to eliminate the Gibbs phenomenon. By enforcing
these constraints in best approximation problems, we can entirely eliminate over- and
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undershoot in one-dimensional continuous approximations, and significantly suppress

them in one- and higher-dimensional discontinuous approximations.

Keywords: Gibbs phenomenon; finite element methods; constrained optimization; isoge-
ometric analysis; discontinuous Galerkin.

AMS Subject Classification: 65N30, 65K10, 35L67

1. Introduction

1.1. Historical overview

The discovery of the Gibbs phenomenon may be traced back to Henry Wilbraham

(1848), and the phenomenon was rediscovered by J. Willard Gibbs (1898–1899), in

their studies on Fourier series.10, 15 It is traditionally described as the inability to

recover point values of a discontinuous function by a truncated Fourier expansion.

Near the discontinuity, the error does not vanish as the number of terms in the

expansion is increased, and the magnitude of the over- and undershoots tends to

a fixed limit. The limiting value is known as the Gibbs constant. It is less well

known that the Gibbs phenomenon also occurs in truncated expansions of other

sets of orthogonal functions.26, 28 In fact, the associated Gibbs constants are often

identical, as is the case for expansions with Legendre, Hermite, or Laguerre poly-

nomials.6, 8

Fundamentally, the Gibbs phenomenon has, however, little to do with Fourier

series or expansions in orthogonal polynomials. The effect arises from the best

approximation in a square integral metric, of which these expansions are exam-

ples.9 As such, it also occurs in best approximation problems in the L2-metric by

piecewise linear polynomials9 or splines.35 The role of the metric herein is cru-

cial: spurious oscillations that appear in the L2-metric are significantly more severe

than those that occur in the Lq-metric when q tends to 1, for which they are in

some cases even completely absent.11 A detailed study on the possible elimination

of the Gibbs phenomenon in Lq-best approximation by piecewise linear finite ele-

ment shape functions is presented in Ref. 17. In the last few decades, the L1(Ω)

functional settings has hence been explored as the point of departure for approxi-

mating solutions to partial differential equations (PDEs).11, 27, 30, 31, 34 The main

challenge behind these approaches is that they require the minimization of a non-

differentiable functional, which leads to a poorly behaved nonlinear problem. As a

consequence, there is a lack of practical algorithms for solving even standard prob-

lems in computational mathematics. Additionally, even though approximations in

subspaces of L1(Ω) reduce spurious oscillations, on some meshes these do not vanish

in general.16, 17

The more conventional (Bubnov–)Galerkin method produces solutions that are

optimal in an inner product-induced norm (associated with subspaces of L2(Ω)).

As such, approximations of interior and boundary layers indeed tend to suffer from

spurious oscillations. This issue is well known in the finite element community,
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and many attempts at resolutions have been proposed. Arguably the most suc-

cessful is the class of residual-based stabilized methods,4, 21, 22 which are primarily

adopted for fluid mechanics-related applications. Residual-based stabilization sig-

nificantly improves the solution quality in regions free of abrupt changes, but the

Gibbs phenomenon still occurs in regions with sharp layers. As a remedy, the finite

element formulation is often augmented with a nonlinear stabilization mechanism

that locally introduces artificial diffusion.3, 24, 43 These methods are referred to as

shock or discontinuity capturing methods.

In the case of nonlinear (hyperbolic) evolution equations, the above stabilization

methods do still not suffice. In order to enhance the quality of numerical approx-

imations for these types of problems, algorithms have been designed to inherit

certain stability properties of the underlying PDE. The prevalent example is the

entropy stability property possessed by entropy solutions. Weak solutions of non-

linear evolution equations are not unique and the entropy stability property singles

out the entropy solution as the physically relevant solution.29 The entropy sta-

bility concept, which reduces for many physical systems to an energy-dissipation

property, has frequently been used in the construction of stable finite element

methods.12, 32, 33, 39, 40, 42 Even though the solution quality enhances significantly,

numerical solutions that inherit entropy stability do not preclude spurious oscilla-

tions. For particular variable sets, the Galerkin method may even exactly satisfy

the entropy stability condition but still exhibit spurious oscillations.23 Evidently,

the entropy stability concept is not inextricably linked to the Gibbs phenomenon.

It does, however, seem to be a good indicator for the identification of shock waves,

and thus as an indicator of where the Gibbs phenomenon might manifest.

A stability concept that is more directly targeted at removing the Gibbs

phenomenon, is the total variation diminishing (TVD) property introduced by

Harten.13, 14 Solutions with the TVD property preclude the growth of the total

variation of the solution. The design of numerical schemes with the TVD property

still is an active area of research. The incentive for the design of TVD schemes is the

desire to produce numerical approximations that satisfy the maximum principle, as

well as certain monotonicity properties. Despite its success, particularly in the finite

difference and finite volume communities, the applicability of TVD schemes limited.

Namely, it is solely suitable for time-dependent and scalar conservation laws and

does not provide any information on local solution quality. Moreover, its introduc-

tion in the discrete setting relies on a Cartesian grid and lacks frame-invariance.

The above two observations, namely (i) the occurrence of the Gibbs phenomenon

in entropy stable discrete solutions, and (ii) the limitations of TVD schemes, have

incentivized the design of a novel stability concept called variation entropy theory.41

This theory provides a local continuous generalization of the TVD stability con-

dition for general conservation laws in an entropy framework. Similar to classical

entropy solutions, variation entropy solutions satisfy an underlying stability condi-

tion. This stability condition serves in the discrete setting as an indicator of the

Gibbs phenomenon. It has successfully been employed in the variation multiscale
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(VMS) paradigm2, 18, 20 to design a framework for discontinuity capturing meth-

ods.43

1.2. Objective

Despite the significant attention it has gained, a precise mathematical definition

of the Gibbs phenomenon does not exist. Any attempt at eliminating the Gibbs

phenomenon thus first requires an identification strategy. The identifier that we

develop is rooted in variation entropy theory. We propose to eliminate the Gibbs

phenomenon via enforcement of constraints.

This brings us to the main objective of this paper: to identify a set of practical

constraints that aim to eliminate the Gibbs phenomenon in the approximation of

sharp layers and discontinuities in finite element spaces. To facilitate the analysis,

we discuss our results in the isogeometric analysis framework, which we think of as

a generalization of C0- and C−1-finite element spaces to higher-order continuity.

Some remarks are in order. First, it may seem feasible to construct constraints

that remove oscillations by explicitly choosing the coefficients of the basis functions

such that the numerical approximation does not exceed bounds of the analytical

profile. This is however not a strategy that is realizable in practical computations.

The challenge is thus to establish a set of constraints that can be adopted in practice.

Second, the idea of a priori enforcing constraints in numerical methods is not new.

A notable contribution in this regard is the work of Evans et al.,7 in which a

framework for the enforcement of constraints in the VMS framework is presented.

1.3. Main results

The main result of this paper is a set of integral constraints that aim to identify

and eliminate the Gibbs phenomenon. The occurrence of the Gibbs phenomenon

in a certain approximation cannot solely be inferred from the approximation itself.

Rather, it stands in relation to the function being approximated, and depends on

the (sub)domain of interest. We propose an indicator of the form

Gφ,ω(φ∗) ≤ 0, (1.1)

where the function φ∗ ∈ H1(Ω̃) is an approximation of the function φ ∈ H1(Ω)

on ω ⊂ Ω. Here, H1(Ω̃) is a broken Sobolev space and Ω̃ is a collection of disjoint

subdomains (precise definitions are provided in Sec. 4). We call this constraint the

Gibbs constraint. It follows from the Gibbs functional, which we define as

Gφ,ω(φ∗) :=

∫
ω

gφ(φ∗) dx, (1.2)

with gφ as

gφ(φ∗) :=

{
‖∇φ∗‖−1

2 ∇φ∗ · ∇(φ∗ − φ) for ∇φ∗ 6= 0,

0 for ∇φ∗ = 0.
(1.3)
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We search functions φ∗ as an approximation of φ for which the Gibbs constraint is

satisfied on predetermined sets of subdomains ω. We study the application of the

Gibbs constraints in the context of finite element best approximation problems. In

particular, we consider the constrained best approximation problem

φh = arginf
θh∈Kp,α

‖φ− θh‖H, (1.4)

where ‖ · ‖H is a norm induced by a certain inner product and the feasible set is

given by

Kp,α := {φh ∈ VhD,p,α : Gφ,ωj (φ
∗) ≤ 0, j = 1, . . . , J, ωj ∈ Tω}. (1.5)

Precise definitions of VhD,p,α and Tω are provided in later in the paper. We demon-

strate for sharp layers that finite element approximations of arbitrary degree and

continuity are free of over- and undershoots when they satisfy the Gibbs constraint

(for one-dimensional continuous approximations), or these oscillations are signifi-

cantly suppressed (for discontinuous approximation).

The choice of subdomains ω depends on the regularity α of the finite element

approximation space and the dimension of the domain. In one dimension, the con-

straints may be applied elementwise (ωj = Kj) when the finite element space is

either discontinuous or C0-continuous. For higher regularity finite element spaces

(α ≥ 1), the subdomains ω need to be collections of neighboring elements, and the

number of collected elements increases with the regularity. In higher dimensions, the

Gibbs constraints are too restrictive for continuous finite element spaces, limiting

its applicability to discontinuous finite element spaces.

1.4. Outline

The remainder of the paper is structured as follows. First, in Sec. 2, we provide

preliminaries concerning function spaces and projectors. Then, in Sec. 3, we present

an overview of the Gibbs phenomenon for best approximations in finite element

spaces of arbitrary degree and continuity. In Sec. 4, we present the identification

of the constraints in one spatial dimension. Next, we extend our construction to

higher dimensions in Sec. 5. Finally, we provide a summary and outlook in Sec. 6.

2. Preliminaries

2.1. Function spaces

We adopt the standard functional analysis setting. We denote by Ω ⊂ Rd the

bounded, open and connected domain with spatial dimension d, and with bound-

ary ∂Ω. L2(Ω) is the Lebesgue space of 2-integrable functions on Ω. Furthermore,

H1(Ω) ⊂ L2(Ω) is the Sobolev space of L2(Ω)-functions with their gradient also in

[L2(Ω)]d. The subspace H1
0 (Ω) ⊂ H1(Ω) consists of functions with zero trace on ∂Ω.

The associated norms are denoted as ‖ · ‖L2(Ω) = ‖ · ‖Ω and ‖ · ‖H1
0 (Ω). Furthermore,

we use standard notation for the L2-inner product on Ω, (·, ·)L2(Ω) = (·, ·)Ω and
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write 〈·, ·〉D for the duality pairing H−1/2(D) ×H1/2(D) → R on some boundary

domain D.

In this paper, we consider finite element spaces of arbitrary degree and con-

tinuity. As such, we make use of the isogeometric analysis framework.1, 5, 19 We

introduce knot vectors, univariate and multivariate B-splines, geometrical map-

pings and the physical mesh. The ordered knot vector Ξ is defined for degree p and

dimensionality n as

Ξ := {−1 = ξ1, ξ2, . . . , ξn+p+1 = 1}, (2.1)

where ξi ∈ R represents the ith knot with i = 1, . . . , n + p + 1. We adopt the

convention that p = 0, 1, 2, . . . refers to piecewise constants, linears, quadratics, etc.

In this work, we restrict ourselves to open knot vectors, meaning that the first and

last knot appear p + 1 times. The univariate B-spline basis functions are defined

recursively for p = 0, 1, 2, . . . . Starting with piecewise constant functions, we have

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(2.2)

whereas for p = 1, 2, . . . , the B-spline basis functions are given by

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.3)

This definition is augmented with the convention that if a denominator (i.e. ξi+p−ξi
or ξi+p+1 − ξi+1) is zero, that fraction is taken as zero. B-spline basis functions

coincide with standard finite element Lagrange basis functions for p = 0 and 1,

and differ for p ≥ 2. The set of B-spline basis functions of degree p consists of

nonnegative piecewise pth-order polynomial functions with local support, that form

a partition of unity. Linear combinations of B-spline basis functions are referred to as

B-splines. We introduce the vector ζ = {ζ1, . . . , ζm} consisting of all knots without

repetitions. The open knot vector implies that the basis functions are interpolatory

at the ends of the interval. Inside a knot interval B-spline basis functions are smooth,

whereas the repetition of a knot reduces the continuity of the B-spline basis function

at that knot. More precisely, a B-spline basis function of degree p at a knot ξi
with multiplicity ki has αi := p − ki continuous derivatives at ξi (note that α1 =

αm = −1). We denote the space of B-splines of polynomial degree p and regularity

α = {α1, . . . , αm} as

Spα := span{Ni,p}ni=1. (2.4)

B-spline basis functions of degree p with uniform internal multiplicity p are interpo-

latory and span the same space as standard C0-Lagrange basis functions. Similarly,

B-spline basis functions of degree p with uniform internal multiplicity p + 1 are

discontinuous and span the same space as discontinuous Lagrange basis functions.

The construction of multivariate B-splines follows from taking a tensor-product

of the univariate B-splines. We introduce the open knot vectors

Ξl := {ξ1,l, ξ2,l, . . . , ξnl+pl+1,l}, (2.5)
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for polynomial degrees pl and dimensionality integers nl for l = 1, . . . , d. We define

for each knot vector Ξl univariate B-spline basis functions Nil,pl,l of polynomial

degree pl for il = 1, . . . , nl. Again we introduce the vector of knots with repetition

ζl = {ζ1,l, . . . , ζml,l} and regularity vector αl = {α1,l, . . . , αml,l}. The Cartesian

mesh on the parametric domain Ω̂ = (−1, 1)d ⊂ Rd is now given by

T̂ = {Q = ⊗l=1,...,d(ζil,l, ζil+1,l), 1 ≤ il ≤ ml − 1}. (2.6)

The boundary of an open element Q ∈ T̂ is denoted ∂Q. The multivariate tensor-

product B-spline basis functions are defined on the parametric mesh T̂ as

Ni1,...,id,p1,...,pd = Ni1,p1,1 ⊗ · · · ⊗Nid,pd,d. (2.7)

The associated tensor-product B-spline function space on T̂ is given by

Sp1,...,pdα1,...,αd
:= span{Ni1,...,id,p1,...,pd}n1,...,nd

i1=1,...,id=1. (2.8)

Throughout this paper, we restrict ourselves to a uniform regularity vector α = αl
in the interior, i.e. α2,l = · · · = αm−1,l = α, and use equal polynomial degrees

p1 = · · · = pd = p. We assume that the physical domain can be exactly described

by the continuously differentiable geometrical map (with continuously differentiable

inverse) F : ξ ∈ Ω̂ → x ∈ Ω. The physical mesh on Ω follows by applying the

geometrical map F on elements of the parametric mesh

T = {K : K = F(Q), Q ∈ K̂}. (2.9)

As usual, we demand the element K ∈ T to be shape-regular. The boundary of

an element K ∈ T is denoted as ∂K. We define the Jacobian of the mapping

F as J = ∂x/∂ξ. Lastly, we introduce the finite element approximation space

Vhp,α = {F(Spα)} := {F(Sp,...,pα,...,α)}, and its subspaces Vh0,p,α ⊂ Vhp,α and VhD,p,α ⊂
Vhp,α consisting of those functions that satisfy homogeneous and inhomogeneous

boundary conditions on ∂Ω, respectively.

2.2. Projection operators

In this section, we introduce some orthogonal projection operators P : V → VhD,p,α.

Consider first the (constrained) H-best approximation problem

φh = arginf
θh∈Vhp,α

‖φ− θh‖H, (2.10)

subject to the trace equality

φh|∂Ω = φ|∂Ω, (2.11)

where ‖ · ‖H is a norm induced by the inner product (·, ·)H. The constraint (2.11)

may be homogenized via the adoption of a lift argument, as is standard in finite

element methods, whereby the approximation space becomes Vh0;p,α ⊂ Vhp,α. The

H-best approximation may be determined by solving the first-order optimality
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conditions obtained from taking the Gateaux derivative in (2.10):

find φh ∈ VhD;p,α such that for all wh ∈ Vh0;p,α

(PHφ− φ,wh)H = (φh − φ,wh)H = 0. (2.12)

For approximation spaces Vhp,α consisting of continuous functions (i.e. α ≥ 0),

we introduce the L2- and H1
0 -orthogonal projectors, respectively, as

(PL2φ− φ,wh)Ω = (φh − φ,wh)Ω = 0, (2.13a)

(PH1
0
φ− φ,wh)H1

0 (Ω) = (φh − φ,wh)H1
0 (Ω) = 0. (2.13b)

Next, we consider approximation spaces Vhp,α consisting of discontinuous func-

tions (i.e. α = −1). In this context, the standard H1
0 -norm is not a suitable best

approximation problem. In order to introduce a suitable alternative to the H1
0 -best

approximation problem, we first introduce some additional notation. We define the

union of (nel) open element domains and the associated interface skeleton as

Ω̃ =

nel⋃
i=1

Ki, (2.14a)

Γ =

nel⋃
i=1

∂Ki, (2.14b)

and introduce Γ0 = Γ\∂Ω as the interior part of the interface skeleton. Next, we

introduce some trace operators that are convenient in the context of discontinuous

basis functions. For an interior edge e, shared by elements K+ and K−, we define

the outward pointing unit normal vectors on e as n+ and n−, respectively. Denoting

φ+ = φ|∂K+ and φ− = φ|∂K− of a scalar quantity φ, we define the average {{φ}}
and jump [[φ]] on Γ0 as

{{φ}} =
1

2
(φ+ + φ−), (2.15a)

[[φ]] = φ+n+ + φ−n−. (2.15b)

For a vector-valued quantity ψ on e we define ψ+ and ψ− analogously and introduce

the average {{ψ}} on Γ0 as

{{ψ}} =
1

2
(ψ+ +ψ−). (2.16)

We do not require the jump of a vector quantity and leave it undefined.

We now provide an alternative to the H1
0 -best approximation problem that

is well-posed. This alternative is closely related the well-known interior penalty

method. This method requires the evaluation of boundary flux ∂nφ on Γ0, which

is an unbounded operator and yields a double-valued function for φ ∈ V = H1(Ω).

To circumvent this issue we first introduce the broken space

H1(Ω̃) = {φ ∈ L2(Ω) : φ|K ∈ H1(K) for all K ∈ T }, (2.17)



February 6, 2024 11:26 WSPC/103-M3AS 2450004

Constraints for eliminating the Gibbs phenomenon in finite element approximation spaces 353

and consider solution functions φ ∈ Ṽ = H1(Ω̃). To mitigate the issue of the

unbounded boundary flux operator, we introduce a suitable additional function

space. Recalling that the boundary flux is double-valued, we introduce the function

space of the boundary fluxes as the product space Q×Q, where Q = H−1/2(Γ0).

Consider then the following operator:

PIP : Ṽ × Q ×Q −→ ranPIP,

(φ, µ+, µ−) −→ (φh, ∂nφ
+,h, ∂nφ

−,h),
(2.18)

with

φh = arginf
θh∈VhD,p,α

1

2
‖φ− θh‖2

H1
0 (Ω̃)
− 〈{{µn−∇θh}}, [[φ− θh]]〉Γ0

+
1

2
〈η[[φ− θh]], [[φ− θh]]〉Γ0 . (2.19)

The range of PIP is given by

ranPIP = {(wh, ∂nw+,h, ∂nw
−,h) : wh ∈ VhD,p,α}, (2.20)

with dimension dim(ranPIP) = dimVhD,p,α. Additionally, the mapping PIP is idem-

potent, and is a linear and bounded operator on the space Ṽ ×Q×Q. As a conse-

quence, PIP is a projector, and we refer to it as the interior penalty projector.37, 38

The penalty parameter η penalizes mismatches of interface jumps. Well-posedness

is ensured when the penalty parameter satisfies a certain lower bound. In this work

we base the value of the penalty parameter η on the work of Shahbazi.36

Remark 2.1. (Interpretation boundary flux) The double-valued quantity µ acts

as a surrogate to ∂nφ in (2.19), and is introduced to make the projector a bounded

operator. In practice, we simply use ∇φ in place of µn in (2.19). To clarify the

consistency of this replacement, we expand a part of the second integrand in (2.19)

{{µn}} · [[φ− φh]] =
1

2
(µ+(φ− φh)+ − µ+(φ− φh)−

−µ−(φ− φh)+ + µ−(φ− φh)−). (2.21)

By then replacing µ by ∂nφ, we arrive at

{{∂nφn}} · [[φ− φh]] =
1

2
(n+ · ∇φ+(φ− φh)+ − n+ · ∇φ+(φ− φh)−

−n− · ∇φ−(φ− φh)+ + n− · ∇φ−(φ− φh)−)

= {{∇φ}} · [[φ− φh]], (2.22)

which reveals the connection between µn and ∇φ.

To employ the interior penalty projector for the best approximation of suffi-

ciently smooth functions, we may replace µn by∇φ (see Remark 2.1). By taking the



February 6, 2024 11:26 WSPC/103-M3AS 2450004

354 M. F. P. ten Eikelder et al.

Gateaux derivative of (2.19), and using this substitution, we obtain the following

first-order optimality condition:

find φh ∈ VhD;p,0 such that for all wh ∈ Vh0;p,0

(φh − φ,wh)H1
0 (Ω̃) − 〈[[φh − φ]], {{∇wh}}〉Γ0 − 〈{{∇φh −∇φ}}, [[wh]]〉Γ0

+ 〈η[[φh − φ]], [[wh]]〉Γ0 = 0. (2.23)

With this substitution it is easy to see that the interior penalty projector is indeed

associated with a best approximation problem

φh = arginf
θh∈VhD,p,−1

‖φ− θh‖IP(Ω), (2.24)

where the norm is defined as

‖v‖2IP(Ω) := ‖v‖2
H1

0 (Ω̃)
− 2〈{{∇v}}, [[v]]〉Γ0 + 〈η[[v]], [[v]]〉Γ0 . (2.25)

3. An Exposition of the Gibbs Phenomenon for Best

Approximations in Finite Element Spaces

In this section we demonstrate the occurrence of the Gibbs phenomenon in best

approximation problems that involve finite element approximation spaces of arbi-

trary continuity and degree. For simplicity, we work with B-splines with equal knot

spacing. We consider the one-dimensional case in Sec. 3.1 and the two-dimensional

case in Sec. 3.2.

3.1. The Gibbs phenomenon in one dimension

We consider best approximations of a step function φ ∈ L2(Ω) defined as

φ = φa(x) =

{
1 x > a,

−1 x < a,
(3.1)

where a denotes the location of the jump discontinuity. As some best approximation

statements involve weak derivatives, we wish to work with solution functions in

H1(Ω). Therefore, we introduce the following smooth (differentiable) approximation

φ ∈ H1(Ω) =: V of the step function:

φ = φεa(x) = tanh

(
x− a
ε

)
, (3.2)

where ε� 1 is a smoothing parameter.

We start off with the case in which the approximation space Vhp,α consists of

continuous functions, i.e. α ≥ 0. The L2-best approximation φh ∈ VhD;1,0 (the space

spanned by continuous piecewise linear basis functions) of the smooth step function

is illustrated in Fig. 1. We observe that the numerical approximation φh contains

over- and undershoots near the sharp layer. These oscillations do not vanish when
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(a) nel = 8 (b) nel = 64

Fig. 1. The L2-best approximation φh ∈ VhD;1,0 of the smooth step function φ = φ0.5.

(a) p = 2 and α = 0 (b) p = 2 and α = 1

Fig. 2. The L2-best approximations φh ∈ VhD;2,0 (left) and φh ∈ VhD;2,1 (right), both with

nel = 8, of the smooth step function φ = φ0.5.

the number of elements is increased. In fact, the over- and undershoots on each

side of the discontinuity converge to the value 1 −
√

3/2 ≈ 0.13 as the number of

elements is increased (assuming that the layer is “sufficiently sharp”).9 We note that

the Gibbs phenomenon is often mistakenly interpreted as related to approximation

with higher-order basis functions. This example illustrates that this is not the case.

Figure 2 shows the approximations in VhD;2,0 and VhD;2,1, the spaces of continuous

quadratic finite elements. The figure shows over- and undershoots of roughly the

same magnitude as those for the linear approximation. For the quadratic B-splines

the over- and undershoots on each side of the discontinuity converge with the num-

ber of elements to a value of approximately 0.10.35 The Gibbs phenomenon persists

when the polynomial order p of the maximum regularity B-spline basis functions is

increased. Moreover, the magnitude of the over- and undershoots converges to the

same value as that of a truncated Fourier series. This value is approximately 0.09

and is known as the Gibbs constant.
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Remark 3.1. (Different degrees of freedom) It is important to realize that the

number of degrees of freedom (dofs) is significantly different for results with the

same number of elements and polynomial degree p but with different regularity α.

In this situation, we have 21 dofs for φh ∈ VhD,2,0 and only 10 dofs for φh ∈ VhD,2,1
(the count includes boundary dofs).

In Fig. 3, we visualize the H1
0 -best approximation φh ∈ VhD;1,0 (the space

spanned by continuous piecewise linear basis functions) for a = 0.5 and a = 0.58.

We observe nodally exact numerical approximations for both cases. The combina-

tion of the linear basis functions with the nodal exactness implies that the numerical

approximations are free of over- and undershoots, i.e. the Gibbs phenomenon is not

present.

In Fig. 4, we illustrate the H1
0 -best approximations for the approximation spaces

of quadratic finite elements VhD;2,0 and VhD;2,1. We observe over- and undershoots for

both the quadratic Lagrange polynomials and the B-spline functions. Again, these

oscillations persist with mesh refinement. For the case of the Lagrange basis func-

tions, we have nodal exactness at element boundary nodes, but the monotonicity

property is lost in the element interiors.25

Lemma 3.1. (Nodal interpolant) The H1
0 -best approximation in the space VhD;p,0

in one dimension is nodally interpolatory at the element boundary nodes. For lin-

ear elements (p = 1) this best approximation is monotonicity preserving, while for

higher-order basis functions (p > 1) monotonicity inside the elements is in general

lost.

Next, we turn our attention to discontinuous approximations, i.e. α = −1. We

select as penalty parameter η = 6(p + 1)2/h. The interior penalty-best approx-

imation of the smooth step function is illustrated in Fig. 5 for the approxima-

tion spaces VhD,1,−1 (discontinuous piecewise linears) and VhD,2,−1 (discontinuous

(a) a = 0.5 (b) a = 0.58

Fig. 3. The H1
0 -best approximations φh ∈ VhD;1,0, with nel = 8, of the smooth step function

φ = φa for different a.
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(a) p = 2 and α = 0 (b) p = 2 and α = 1

Fig. 4. The H1
0 -best approximation φh ∈ VhD;2,0 (left) and φh ∈ VhD;2,1 (right), with nel = 8, of

the smooth step function φ = φ0.5.

(a) p = 1 (b) p = 2

Fig. 5. The interior penalty-best approximation φh ∈ VhD;p,−1, with nel = 8, of the smooth step

function φ = φ0.5, for different p.

piecewise quadratics). For this best approximation problem, we see that the numer-

ical approximations φh contain over- and undershoots near the sharp layer; the

nodal exactness of the H1
0 -best approximation problem is not inherited. Further-

more, we observe that the average of the approximation φh at the element bound-

aries coincides with the value of φ. This is a property of the interior penalty

projector.38

Proposition 3.1. (Vanishing average error on element boundaries) The interior

penalty-best approximation φh ∈ VhD,p,−1 of φ in one-dimension satisfies the prop-

erty

{{φh − φ}}|Γ0 = 0, (3.3)

for all polynomial orders p.
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3.2. The Gibbs phenomenon in two dimensions

We consider best approximations of a two-dimensional step function φ ∈ L2(Ω) on

the square domain Ω = (−1, 1)2

φ = φ(x, y) =

{
1 x− y > 0,

−1 x− y < 0.

Again, we work with a smooth approximation φ ∈ H1(Ω) =: V of the step function

φ = φε(x, y) = tanh

(
y − x
ε

)
,

where ε� 1 is a smoothing parameter.

Analogous to the one-dimensional case, we begin with approximation spaces

VhD,p,α consisting of continuous functions (α ≥ 0). Recall from the one-dimensional

case that the L2-best approximation contains over- and undershoots. This is also the

case in higher dimensions, and we omit the visualization. We display the H1
0 -best

approximation for the continuous finite element approximation spaces VhD,1,0,VhD,2,0
and VhD,2,1 in Fig. 6. We observe the occurrence of over- and undershoots for each

of the approximations.

Next, we consider discontinuous approximations (α = −1). Analogous to the

one-dimensional case, we solely consider the interior penalty-best approximation.

We select as a penalty parameter η = 2(2p + 1)(2p + 2)/h. In Fig. 7, we visualize

the interior penalty-best approximations for approximation spaces Vh1,−1 and Vh2,−1,

i.e. for linear and quadratic discontinuous basis functions. Again, we observe over-

and undershoots of the finite element approximation in both cases.

4. Eliminating the Gibbs Phenomenon in One Dimension

In this section, we present the constraints for the elimination of the Gibbs phe-

nomenon in finite element spaces in one dimension. We call these constraints the

Gibbs constraints. To this purpose, we first describe the construction of our pro-

posed Gibbs constraints in general approximation spaces in Sec. 4.1, and present

the properties of the constraints in Sec. 4.2. Next, we advance the discussion to

best approximation problems in Sec. 4.3. Finally, in Sec. 4.4, we apply the Gibbs

constraints to finite element spaces of arbitrary continuity, and perform numerical

experiments.

4.1. Gibbs constraints

One of the challenges of dealing with the Gibbs phenomenon is the uncertainty in

the level of locality that is required to identify the phenomenon. Pointwise evalua-

tions of functions, or their derivatives, carry insufficient information to be able to

infer the occurrence of the Gibbs phenomenon. On the other hand, the informa-

tion that may be deduced from global evaluations, such as global integrals, is too
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(a) p = 1 and α = 0 (b) p = 2 and α = 0

(c) p = 2 and α = 1

Fig. 6. The H1
0 -best approximation φh ∈ VhD;p,α, with nel = 8×8, of the smooth two-dimensional

step function, for different p and α.

coarse-grained to establish the existence of spurious oscillations on a local scale. In

this section, we construct a constraint for the elimination of the Gibbs phenomenon

on a given subdomain. The selection of the subdomains then remains an important

matter, which we discuss extensively in Sec. 4.4 in the context of finite element

approximations. We first introduce some well-known but important theories associ-

ated with the total variation concept. The constraint is specified in Definitions 4.2

and 4.3.
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(a) p = 1 (b) p = 2

Fig. 7. The interior penalty-best approximation φh ∈ VhD;p,−1, with nel = 8× 8, of the smooth

two-dimensional step function, for different p.

Consider the one-dimensional simply connected domain Ω ⊂ R, and let φ∗ : Ω→
R denote an approximation of φ : Ω → R. The main ingredient in the elimination

of the Gibbs phenomenon relies on the fundamental theorem of Lebesgue integral

calculus, which we recall here.

Theorem 4.1. (Fundamental theorem of Lebesgue integral calculus) Let θ : Ω→ R
be an absolutely continuous function, then θ is differentiable almost everywhere and

for each ω = [xL, xR] ⊂ Ω we have∫ xR

xL

Dθ dx = θR − θL, (4.1)

with trace equalities θ(xL) = θL and θ(xR) = θR, and Dθ ∈ L1(Ω).

The fundamental theorem communicates that the trace values (the right-hand

side in (4.1)) are controlled by the integral. Still, the trace values do not provide

any information on the oscillatory behavior of the function θ inside ω. In contrast,

the total variation is a concept that does incorporate this.

Definition 4.1. (Total variation) Let θ : Ω → R be a given function, and let

P = {xL = x0, x1, . . . , xN−1, xN = xR} denote a partition of ω = [xL, xR] ⊂ Ω.

The variation of θ with respect to partition P is defined as

Vω,P (θ) :=

N∑
i=0

|θ(xi+1)− θ(xi)|. (4.2)
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Denote by P the set of all possible partitions of ω. The total variation is given by

Vω(θ) := sup
P∈P

Vω,P (θ). (4.3)

The total variation Vω(θ) represents a measure of the fluctuations of θ on ω.

A function θ with the property Vω(θ) < ∞ is said to have bounded variation and

we write θ ∈ BV(ω). An absolutely continuous function has bounded variation.

In case θ is a continuous differentiable function, the total variation Vω(θ) may be

evaluated as follows.

Lemma 4.1. (Total variation continuous differentiable function) Let θ ∈ C1(Ω).

The total variation of θ on ω ⊂ Ω is given by

Vω(θ) =

∫
ω

|Dθ|dx. (4.4)

If the function θ is only piecewise continuously differentiable, the expression in

Lemma 4.1 needs to be augmented with jump terms, as is expressed in Lemma 4.2.

Lemma 4.2. (Total variation piecewise-continuous function) Let θ ∈ BV(Ω) be a

function that has a continuous derivative on each (ai, ai+1) ⊂ Ω, i = 0, . . . ,M and

jump discontinuities at ai, i = 1, . . . ,M . Denote with a−i , a
+
i the left and right limits

of the discontinuity at ai. The total variation of θ on ω ⊂ Ω is given by

Vω(θ) =

M∑
i=0

∫ ai+1

ai

|Dθ|dx+

M∑
i=1

|θ(ai)− θ(a−i )|+ |θ(a+
i )− θ(ai)|. (4.5)

Next, we note that Vω is convex and satisfies a homogeneity property.

Proposition 4.1. (Convexity and homogeneity of the total variation) Given the

same assumptions on θ as in Lemma 4.2, the functional Vω is convex and satisfies

the homogeneity property

dVω(θ)(θ) = Vω(θ). (4.6)

Remark 4.1. A convex functional that satisfies the homogeneity property is

termed a variation entropy.41 Variation entropy functionals form the basis of an

entropy stability theory for (hyperbolic) conservation laws called variation entropy

theory.

The total variation of a monotonic function is related to its trace values in the

following way.

Lemma 4.3. (Total variation monotonic function) Let ω = [xL, xR] ⊂ Ω and

let C0
D(Ω) denote the space of continuous functions θ that satisfy trace equalities

θ(xL) = θL and θ(xR) = θR. For θ ∈ C0
D(Ω) we have

Vω(θ) ≥ |θR − θL|, (4.7)

where equality only holds when θ is monotonic.
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This is an important ingredient in the design of the Gibbs constraints. It com-

municates that the jump of the trace values are controlled by the total variation.

Let us introduce the quantity

Vφ,ω(φ∗) := Vω(φ∗)− Vω(φ). (4.8)

With the aim of eliminating the Gibbs phenomenon, one could introduce the con-

straint Vφ,ω(φ∗) ≤ 0. The disadvantage is that total variation does not take into

account the sign of its argument

Vω(−θ) = Vω(θ). (4.9)

As a consequence, we have

Vφ,ω(−φ) = 0. (4.10)

We now generalize the element-based definition of the subdivision of domain Ω,

(2.14a), to the union of (J) disjoint general subdomains, i.e.

Ω̃ :=

J⋃
j=1

ωj , (4.11)

with ωj ∩ ωk = ∅ for j 6= k. Furthermore, we redefine the broken space (2.17) for

this subdivision as

H1(Ω̃) := {v ∈ L2(Ω) : v|ω ∈ H1(ω) for all ω ∈ Tω}, (4.12)

with Tω the collection of ωj , j = 1, . . . , J .

Motivated by the above observation, we wish to find approximations that,

besides bounding the size of the jump of the approximation, also carry information

about the direction of the analytical solution φ. To this purpose we now propose

the Gibbs functional and the associated Gibbs constraint.

Definition 4.2. (Gibbs functional) The Gibbs functional of the function φ∗ ∈
H1(Ω̃), on ω = ωj (for some j) and with respect to the given function φ ∈ H1(Ω),

is defined as

Gφ,ω(φ∗) :=

∫
ω

gφ(φ∗)dx, (4.13)

where the functional gφ is defined as

gφ(φ∗) := |Dφ∗| − sgn(Dφ∗)Dφ = −sgn(Dφ∗)Dφ′. (4.14)

Here, sgn is the sign function (i.e. sgn(t) = t/|t| for t 6= 0 and sgn(0) = 0), and

φ′ : Ω→ R defined as φ′ := φ− φ∗ denotes the error function.

Definition 4.3. (Gibbs constraint) The Gibbs constraint of the function φ∗ ∈
H1(Ω̃), on ω and with respect to the given function φ ∈ H1(Ω), is defined as

Gφ,ω(φ∗) ≤ 0. (4.15)
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Note that the incorporation of the correct sign may be recognized in the Gibbs

constraint via the equivalence

|Dφ∗| − |Dφ| ≤ 0

sgn(Dφ∗)− sgn(Dφ) = 0

}
⇔ gφ(φ∗) ≤ 0, (4.16)

the integration of which provides the Gibbs constraint.

The objective is now to search for functions φ∗ as approximations of φ that

satisfy the Gibbs constraint on certain ω.

4.2. Properties of the Gibbs constraint

It is the purpose of this section to discuss the properties of the Gibbs constraint

and to establish its connection with the well-known concepts of monotonic solutions

and the maximum principle.

We have the simple but important property that φ as an approximation of itself

satisfies the Gibbs constraint.

Proposition 4.2. (Perfect approximation) The Gibbs functional vanishes for a

perfect approximation (φ∗ = φ)

Gφ,ω(φ) = 0. (4.17)

Furthermore, we have the following lower bound of the Gibbs functional.

Lemma 4.4. (Gibbs functional bound) The Gibbs functional satisfies the lower

bound

Gφ,ω(φ∗) ≥ Vφ,ω(φ∗). (4.18)

We now proceed with establishing connections between the Gibbs constraint and

certain properties of the function approximation. We first provide a characterization

of the Gibbs functional.

Lemma 4.5. (Characterization Gibbs functional) Let φ∗ ∈ H1(Ω̃) and φ ∈ H1(Ω),

and let ω = [xL, xR] ⊂ Ω be given. Denote the locations of sign changes of Dφ∗ by

xi, i = 1, . . . , N with xi < xi+1. The form of Gibbs functional Gφ,ω depends on the

sign of Dφ∗ on [xL, x1] and the number of sign changes N

(1) for N odd and Dφ∗ ≥ 0 on [xL, x1]

Gφ,ω(φ∗) = φ′(xL) + 2

N∑
i=1

(−1)iφ′(xi) + φ′(xR), (4.19)

(2) for N odd and Dφ∗ ≤ 0 on [xL, x1]

Gφ,ω(φ∗) = −φ′(xL)− 2

N∑
i=1

(−1)iφ′(xi)− φ′(xR), (4.20)
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(3) for N even and Dφ∗ ≥ 0 on [xL, x1]

Gφ,ω(φ∗) = φ′(xL) + 2

N∑
i=1

(−1)iφ′(xi)− φ′(xR), (4.21)

(4) for N even and Dφ∗ ≤ 0 on [xL, x1]

Gφ,ω(φ∗) = −φ′(xL)− 2

N∑
i=1

(−1)iφ′(xi) + φ′(xR), (4.22)

where we recall φ′ = φ− φ∗.

A direct consequence of this characterization is the following lemma.

Lemma 4.6. (Interpolatory monotonic approximation) An interpolatory mono-

tonic approximation φ∗ ∈ H1(Ω̃) of φ ∈ H1(Ω) on ω ⊂ Ω satisfies the Gibbs

constraint

Gφ,ω(φ∗) ≤ 0. (4.23)

Additionally, an approximation of a monotonic analytical profile that is free of

the Gibbs phenomenon satisfies a bound on the trace values.

Lemma 4.7. (Approximation of monotonic function) Suppose that φ ∈ H1(Ω) is

monotonically increasing (decreasing) on ω = [xL, xR] ⊂ Ω and the approximation

φ∗ ∈ H1(Ω̃) satisfies the Gibbs constraint

Gφ,ω(φ∗) ≤ 0, (4.24)

then the increase (decrease) of φ∗ is bounded by the increase (decrease) of φ, i.e.

φ∗(xR)− φ∗(xL) ≤ φ(xR)− φ(xL) (if φ is monotonically increasing), (4.25a)

φ∗(xL)− φ∗(xR) ≤ φ(xL)− φ(xR) (if φ is monotonically decreasing). (4.25b)

The equality in (4.25) holds when (4.24) holds with equality.

Proof. We omit the proof of the general case and consider instead two simple cases.

Without loss of generality, assume that φ is monotonically increasing. Suppose first

that Dφ∗ has no sign changes, i.e. φ∗ is monotonically increasing on ω = [xL, xR].

Then, (4.21) reduces to

Gφ,ω(φ∗) = (φ∗(xR)− φ∗(xL))− (φ(xR)− φ(xL)), (4.26)

which is negative if and only if (4.25a) holds. Now, suppose that Dφ∗ > 0 has a

single change of sign, say at x1, and that Dφ∗ > 0 for x < x1. Additionally, since we

may shift φ∗ by φ′(xL), we take φ′(xL) = 0. It is easy to verify that φ∗(x1) ≤ φ(xR),

as otherwise Gφ,ω(φ∗) ≥ 0. Since φ∗ is decreasing on [x1, xR] and φ is increasing, we

immediately have φ′(xR) ≥ 0. The case Dφ∗ < 0 for x < x1 follows from a similar

argument.
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Next, we introduce the classical definition of the maximum principle.

Definition 4.4. (Maximum principle) An approximation φ∗ : Ω→ R of φ : Ω→ R
satisfies the maximum principle on ω ⊂ Ω if and only if it does not exceed the

bounds of φ on ω

inf
ω
φ∗ ≥ inf

ω
φ, (4.27a)

sup
ω
φ∗ ≤ sup

ω
φ. (4.27b)

Theorem 4.2. (Interpolatory approximation of monotonic function) Suppose that

φ ∈ H1(Ω) is monotonic on ω = [xL, xR] ⊂ Ω and φ∗ ∈ H1(Ω̃) is an interpolatory

approximation, i.e. φ∗(xL) = φ(xL) and φ∗(xR) = φ(xR). We have the following

results:

(1) Gφ,ω(φ∗) ≥ 0,

(2) φ∗ is a monotonic function if and only if Gφ,ω(φ∗) = 0,

(3) if Gφ,ω(φ∗) = 0 then φ∗ satisfies the maximum principle on ω.

Proof. (1) Without loss of generality, assume φ is increasing. In case Dφ∗ does

not change sign, we invoke (4.26) of Lemma 4.7 and obtain Gφ,ω(φ∗) = 0. In the

other case, denote the locations of sign changes of Dφ∗ as xi ∈ ω, i = 1, . . . , N with

xi ≤ xi+1. Lemma 4.5 provides the following:

• for Dφ∗ ≥ 0 on [xL, x1]

Gφ,ω(φ∗) = 2

N∑
i=1

(−1)iφ′(xi), (4.28)

• for Dφ∗ ≤ 0 on [xL, x1]

Gφ,ω(φ∗) = −2

N∑
i=1

(−1)iφ′(xi), (4.29)

where we recall φ′ = φ − φ∗. To show nonnegativity of (4.28) and (4.29), one has

to consider various cases. For example, for N = 1 we have G = 2|φ′(x1)| ≥ 0. We

omit a detailed proof of the general case.

(2) “⇒”: Suppose φ∗ is a monotonic function. Without loss of generality, assume

φ is increasing. Since φ∗ is a monotonic function, the sums in (4.29) and (4.28) are

empty and the expressions vanish.

“⇐”: Suppose that Gφ,ω(φ∗) = 0. Lemma 4.4 implies Vφ,ω(φ∗) ≤ 0. Without

loss of generality, suppose that φ is monotonically increasing. We arrive at

Vω(φ∗) ≤ φ(xR)− φ(xL). (4.30)

Since φ∗ is interpolatory, Lemma 4.3 implies that φ∗ is monotonically increasing.



February 6, 2024 11:26 WSPC/103-M3AS 2450004

366 M. F. P. ten Eikelder et al.

(3) If Gφ,ω(φ∗) = 0 then φ∗ is monotonic via Claim 2, and (4.25a) provides the

maximum principle via

sup
ω
φ∗ = φ∗(xR) = φ(xR) = sup

ω
φ, (4.31a)

inf
ω
φ∗ = φ∗(xL) = φ(xL) = inf

ω
φ. (4.31b)

We have the following connection between the Gibbs constraints and the maxi-

mum principle.

Lemma 4.8. (Gibbs constraints and maximum principle) Let the analytical profile

φ∗ ∈ H1(Ω) be monotonic on each ωj , j = 1, . . . , J, and let φ∗ ∈ H1(Ω̃) be an

approximation that satisfies Gφ,ωj (φ
∗) ≤ 0, j = 1, . . . , J, such that φ∗ is interpola-

tory on ∂Ω. Then, φ∗ satisfies the maximum principle on Ω.

In order to preclude the Gibbs phenomenon on the entire domain, the strategy is

to require Gφ,ωj (φ
∗) ≤ 0, for j = 1, . . . , J . We note that the practical applicability of

this strategy relies on an appropriately chosen subdivision of Ω. In the subsequent

section, we discuss the Gibbs constraints in the context of best approximation

problems. We return to the domain subdivision problem in the context of finite

elements in Sec. 4.4.

4.3. Best approximation problems under Gibbs constraints

Let now φ ∈ H1(Ω) be given and consider the best approximation problem

φ∗ = arginf
θ∗∈K

‖φ− θ∗‖H, (4.32a)

where the feasible set is defined as

K := {φ∗ ∈ H1(Ω̃) : Gφ,ωj (φ
∗) ≤ 0, j = 1, . . . , J}. (4.32b)

We note that, in general K, has no strictly feasible point. For example, in the case

φ ≡ 0 in Ω, we have Gφ,ωj (φ
∗) = 0 for j = 1, . . . , J . In the following we exclude this

trivial case.

The standard techniques to study best approximation problems are the gradient-

based methods. We remark, however, that the Gateaux derivative of φ∗ → Gφ,ωj (φ
∗)

does not exist due to the occurrence of the sign function. To permit the adoption

of standard gradient methods, we regularize the nondifferentiable constraint func-

tion as follows. We introduce the parameter ε ∈ R and define the differentiable

regularizations | · |ε : R→ R+ and sgnε : R→ R as

|r|ε := |r2 + ε2|1/2, (4.33a)

sgnε(r) := r|r|−1
ε , (4.33b)
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which satisfy the relation

D|r|ε = sgnε(r). (4.34)

Next, we introduce the regularized functional

G ε
φ,ω(φ∗) :=

∫
ω

gεφ(φ∗) dx, (4.35)

where the functional gεφ is defined as

gεφ(φ∗) := |Dφ∗|ε − sgnε(Dφ
∗)Dφ = −sgnε(Dφ

∗)Dφ′ + ε2|Dφ∗|−1
ε . (4.36)

It is now clear that the regularized functional G ε
φ,ω(φ∗) is differentiable in the

Gateaux sense. The Gateaux derivative of G ε
φ,ω(φ∗), denoted dG ε

φ,ω(φ∗)(w), is given

by

dG ε
φ,ω(φ∗)(w) =

∫
ωj

|Dφ∗|−1
ε Dφ∗Dw − ε2|Dφ∗|−3

ε DφDw dx. (4.37)

We have the following property regarding the convexity of the regularized Gibbs

functional.

Proposition 4.3. (Convexity of Gibbs functional) The functional gεφ is quasi-

convex

gεφ,ω(ζφ∗1 + (1− ζ)φ∗2) ≤ max{gεφ,ω(φ∗1), gε(φ∗2)}, (4.38)

for all φ∗1, φ
∗
2 ∈ H1(Ω̃), ζ ∈ [0, 1]. The functional Vφ,ω is convex, but G ε

φ,ω is in

general not (quasi-)convex.

We now consider the best approximation problem

φ∗ = arginf
θ∗∈Kε

‖φ− θ∗‖H, (4.39a)

where the regularized feasible set is defined as

Kε := {φ∗ ∈ H1(Ω̃) : G ε
φ,ωj (φ

∗) ≤ 0, j = 1, . . . , J}. (4.39b)

A consequence of Proposition 4.3 is that the feasible set Kε is not convex. This

is a result of the occurrence of the (regularized) sign function in gεφ.

Remark 4.2. The feasible set determined by (a regularized) functional Vφ,ω(φ∗) ≤
0, i.e.

{φ∗ ∈ H1(Ω̃) : V ε
φ,ωj (φ

∗) ≤ 0, j = 1, . . . , J}, (4.40)

with

V ε
φ,ωj (φ

∗) =

∫
ω

|Dφ∗|ε − |Dφ|ε dx, (4.41)

is convex. Furthermore, note that quasi-convexity of the functional is sufficient for

the associated feasible set to be convex.
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We now introduce the first-order optimality Karush–Kuhn–Tucker (KKT) con-

ditions of the constrained best approximation problem (4.39). We note that the

solution of the KKT conditions is only guaranteed to be a local optimum due to

the lack of convexity of the feasible set Kε. Replacing Kε by the feasible set from

(4.40) would imply global optimality.

Theorem 4.3. (KKT conditions) The function φ∗ ∈ K is a local optimum

of the problem (4.39) if and only if there exist Lagrange multipliers λj ∈ R
[(3)](j=1,. . . ,J)[(3)] such that the following KKT conditions hold :

Stationarity :

Find φ∗ ∈ H1(Ω̃), λj ∈ R for j = 1, . . . , J such that

(φ∗ − φ,w)H +
J∑
j=1

λjdG ε
φ,ωj (φ

∗)(w) = 0 for all w ∈ H1(Ω̃), (4.42a)

Primal feasibility :

G ε
φ,ωj (φ

∗) ≤ 0 for j = 1, . . . , J, (4.42b)

Dual feasibility :

λj ≥ 0 for j = 1, . . . , J, (4.42c)

Complementary slackness:

λjG
ε
φ,ωj (φ

∗) = 0 for j = 1, . . . , J. (4.42d)

Proposition 4.4. (Homogeneity Gibbs functional) The functional G ε
φ,ω satisfies

the property

lim
ε→0

dG ε
φ,ω(φ∗)(φ∗) = Vω(φ∗) ≥ 0. (4.43)

Proof. Substitution of w = φ∗ ∈ H1(Ω̃) into (4.37) provides

dG ε
φ,ω(φ∗)(φ∗) =

∫
ω

dgεφ(φ∗)(φ∗)dx, (4.44a)

dgεφ(φ∗)(φ∗) = |Dφ∗|ε − ε2|Dφ∗|−3
ε (|Dφ∗|2ε + DφDφ∗). (4.44b)

The integrand dgεφ(φ∗)(φ∗) vanishes for Dφ∗ = 0. On the other hand, for Dφ∗ 6= 0

we have

lim
ε→0

dgεφ(φ∗)(φ∗) = |Dφ∗| ≥ 0. (4.45)

Lemma 4.9. (Positivity) The solution of the optimization problem (4.32) has the

following inner product form that is positive:

(φ′, φ∗)H ≥ 0. (4.46)
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Proof. Substitution of w = φ∗ into the stationarity condition (4.42a) provides

−(φ′, φ∗)H +

J∑
j=1

λjdG ε
φ,ω(φ∗)(φ∗) = 0, (4.47)

where we have employed the substitution φ′ = φ− φ∗. The result now follows from

taking the limit ε → 0, utilizing Proposition 4.4 and invoking the dual feasibility

property (4.42c).

4.4. Best approximations in finite element spaces

In this section, we seek for finite element approximations that satisfy the Gibbs

constraints. Consider the best approximation problem

φh = arginf
θh∈Kp,α

‖φ− θh‖H, (4.48a)

where the feasible set Kp,α for a finite element approximation space of polynomial

degree p and regularity α is defined as

Kp,α := {φh ∈ VhD;p,α : Gφ,ωj (φ
h) ≤ 0, j = 1, . . . , J, }. (4.48b)

To proceed, we regularize the nondifferentiable constraint according to (4.35)-

(4.36) and introduce the KKT conditions of the regularized problem.

Stationarity :

Find φh ∈ VhD,p,α, λj ∈ R for j = 1, . . . , J such that

(φh − φ,wh)H +

J∑
j=1

λjdG ε
φ,ωj (φ

h)(wh) = 0 for all wh ∈ Vh0,p,α, (4.49a)

Primal feasibility :

G ε
φ,ωj (φ

h) ≤ 0 for j = 1, . . . , J, (4.49b)

Dual feasibility :

λj ≥ 0 for j = 1, . . . , J, (4.49c)

Complementary slackness:

λjG
ε
φ,ωj (φ

h) = 0 for j = 1, . . . , J. (4.49d)

The problem (4.49) takes the following algebraic form:

Find φh,λ such that

Mφh = Mφ− λTG(φh), (4.50a)

g(φh) ≤ 0, (4.50b)

λ ≥ 0, (4.50c)

λTg(φh) = 0, (4.50d)
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where the matrices M = [MAB ] ∈ Rndof×ndof and G(φh) = [GjB ] ∈ Rnel×ndof are

given by

MAB = (NA, NB)H, (4.51a)

GjB =

∫
ωj

|Dφh|−1
ε DφhDNB − ε2|Dφh|−3

ε DφDNB dx, (4.51b)

and the vectors are g(φh) = [Gφ,ωj (φ
h)] ∈ Rnel and λ = [λj ]. Here, ndof denotes

the number of dofs.

Remark 4.3. (Computation constrained solutions) In this paper, we use care-

fully selected examples that allow the construction of solutions of the constrained

best approximation problem (4.48). The computation of constrained solutions with

standard gradient-based methods is in general very difficult. There are a number

of challenges. First, in some situations the number of dofs in the feasible solution

set may be very small. It can even occur that the feasible set consists of a single

function (see Remark 4.4). This is extremely difficult to find with gradient-based

methods. Second, the problem is in general nonconvex. As a consequence, gradient-

based methods may get stuck in local optima. This excludes a large class of powerful

methodologies from convex optimization (that often rely on the KKT conditions).

Third, the problem is highly nonlinear. This means that standard Newton-Raphson

linearization methods often do not converge, and one has to work with less effi-

cient approaches such as quasi-Newton-type methods. Finally, we note that similar

issues occur in the computation of Lq-best approximations when taking q → 1, and

especially when q = 1.

We start with discontinuous approximation spaces (α = −1). In order to apply

the Gibbs constraints in practice, the subdomains ωj need to be selected. We select

the subsets ωj ⊂ Ω, j = 1, . . . , J as the finite elements: ωj = Kj . Note that the set

Kp,−1 is not empty (it contains at least all piecewise constants). The feasible set is

convex for discontinuous piecewise linear basis functions (recall that it is general

not convex).

Theorem 4.4. (Convexity of K1,−1) The feasible set K1,−1 is convex.

Proof. Let φh1 , φ
h
2 ∈ K1,−1 be given. Fix an elementKi = (xi, xi+1); on this element

the functions φh1 and φh2 have a representation φh1 = a1x+ b1 and φh2 = a2x+ b2 for

some scalars a1, a2, b1, b2 ∈ R. Since φh1 , φ
h
2 ∈ K1,−1, we now have

Gφ,Ki(φ
h
1 ) =

∫ xi+1

xi

|Dφh1 | − sgn(Dφh1 )Dφ dx

= (xi+1 − xi)|a1| − sgn(a1)(φ(xi+1)− φ(xi)) ≤ 0,

(4.52a)
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Gφ,Ki(φ
h) =

∫ xi+1

xi

|Dφh2 | − sgn(Dφh2 )Dφdx

= (xi+1 − xi)|a2| − sgn(a2)(φ(xi+1)− φ(xi)) ≤ 0.

(4.52b)

Without loss of generality, we assume φ(xi+1) − φ(xi) > 0. From (4.52), we find

a1 > 0 and a2 > 0, and we can write

(xi+1 − xi)a1 − (φ(xi+1)− φ(xi)) ≤ 0, (4.53a)

(xi+1 − xi)a2 − (φ(xi+1)− φ(xi)) ≤ 0. (4.53b)

Now, let ζ ∈ [0, 1] and define φhζ = ζφh1 + (1 − ζ)φh2 . Convexity is then a direct

consequence of (4.53)

Gφ,Ki(φ
h
ζ ) =

∫ xi+1

xi

|Dφhζ | − sgn(Dφhζ )Dφdx

= (xi+1 − xi)(ζa1 + (1− ζ)a2)− (φ(xi+1)− φ(xi))

≤ 0. (4.54)

Consider now the best approximation problem (4.48a)–(4.48b) with the inte-

rior penalty optimality (2.18)–(2.19), subject to the elementwise Gibbs constraints.

Note that the Gateaux derivatives dG ε
φ,ωj

are linearly independent. Therefore, the

Lagrange multiplier λj solely depends on quantities defined on Kj . We visualize

the interior penalty-best approximation φh ∈ VhD;p,−1 of the smooth step function,

subject to the elementwise Gibbs constraints, in Fig. 8 for p = 1, 2.

We observe that the constrained interior penalty-best approximations do not

show over- or undershoots. Note that this property is not valid in general. Not all

feasible solutions are monotonic, since the addition of a piecewise constant does

(a) p = 1 (b) p = 2

Fig. 8. The interior penalty-best approximation φh ∈ VhD;p,−1, with nel = 8, of the smooth step

function φ = φ0.5, subject to elementwise Gibbs constraints, for different for p.
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not alter the Gibbs functional. Furthermore, both approximations deviate by a

small piecewise constant away from the sharp layer. This behavior diminishes as

the penalty parameter η is increased.

Next, we focus on the case α = 0, i.e. continuous approximation spaces. Again,

we take ωj = Kj . It is easy to see that Kp,0 is not empty. Namely, K1,0 contains

the piecewise linear interpolant, and K1,0 ⊂ Kp,0 for p ≥ 1. Considering the best

approximation problem (4.48a)–(4.48b) with H = H1
0 (Ω), we have the following

lemma.

Lemma 4.10. (H1
0 -orthogonality continuous linears) Let φh ∈ VhD,1,0 be the H1

0 -

best approximation of φ ∈ V. We have the property∫
Ki

DφhDφ′ dx = 0, (4.55)

for all elements Ki = (xL,i, xR,i), i = 1, . . . , nel.

Proof. Applying the first Green’s identity we find∫
Ki

DφhDφ′ dx =

∫
∂Ki

nDφhφ′ da−
∫
Ki

D2φhφ′ dx, (4.56)

with n the outward unit normal. Noting that for piecewise linear polynomials the

second term vanishes and we are left with∫
Ki

DφhDφ′ dx = φ′(xR,i)Dφ
h(xR,i)− φ′(xL,i)Dφh(xL,i). (4.57)

Recalling now from Lemma 3.1 that the H1
0 -projector provides nodally exact solu-

tions (i.e. φ′(xR,i) = φ′(xL,i) = 0) completes the proof.

Lemma 4.11. (Vanishing Lagrange multipliers) Suppose that the approximation

satisfies homogeneous boundary conditions, φh ∈ Vh0,1,0. The Lagrange multiplier λj
in the KKT conditions (4.49) vanishes if φh is not constant on ωj , for ε→ 0.

Proof. Noting that the H1
0 -best approximation is monotonic and interpolatory,

Lemma 4.6 ensures satisfaction of the Gibbs constraints Gφ,Ki(φ
h) ≤ 0 (for ε→ 0).

As a consequence, the first term in (4.49a) vanishes (consistent with Lemma 4.10),

and we are left with

J∑
j=1

λjdG ε
φ,Kj (φ

h)(wh) = 0, (4.58)

for all wh ∈ Vh0,1,0. Substituting wh = φh, taking the limit ε→ 0 and invoking the

homogeneity property of Proposition 4.4 yields

J∑
j=1

λjVωj (φ
h) = 0. (4.59)
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(a) p = 1 (b) p = 2

Fig. 9. The H1
0 -best approximation φh ∈ VhD;p,0, with nel = 8, of the smooth step function

φ = φ0.58, subject to elementwise Gibbs constraints, for different p.

Noting that λj ≥ 0 and Vω(φh) ≥ 0, we get λjVωj (φ
h) = 0, for j = 1, . . . , J . If φh

is not constant on ωj , we have Vωj (φ
h) > 0 and thus λj = 0.

Note that, as a consequence of the overlapping support of the basis functions,

the Gateaux derivatives dG ε
φ,Kj

are linearly dependent. Therefore, the Lagrange

multipliers λj , j = 1, . . . , nel are nonlocal, in the sense that λj does not solely depend

on quantities defined on ωj . The H1
0 -best approximation φh ∈ VhD;p,0, p = 1, 2, of the

smooth step function (with a = 0.58) subject to the elementwise Gibbs constraints

is illustrated in Fig. 9. We observe in both figures an interpolatory monotonic

approximation. Moreover, we have Gφ,Kj (φ
h) = 0 for all element numbers j =

1, . . . , J . In general, the following theorem holds.

Theorem 4.5. (Monotonic interpolant for regularity α = 0) The constrained best

approximation φh ∈ VhD,p,0 defined by the problem (4.48a)–(4.48b) of a monotonic

profile φ is a monotonic interpolant.

Remark 4.4. (Uniqueness) By Theorem 4.5, the best approximation for poly-

nomial degree p = 1 is the sole feasible solution in K1,0. This function is thus

independent of the optimality condition H.

We now turn our attention to higher-order smooth (α ≥ 1) approximation spaces

VhD,p,α. The following proposition precludes existence of a solution for ωj = Kj in

general.

Proposition 4.5. (Infeasible elementwise constraints) The constrained best

approximation problem (4.48a)–(4.48b) with ωj = Kj and a = 0.58 has in general

no solution for α ≥ 1.

This is a consequence of the observation that interpolatory solutions exist for

α = −1 and α = 0, but not for α ≥ 1. We illustrate this for the smooth step
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Fig. 10. Sharp finite element approximations φh1 , φ
h
2 , φ

h
3 ∈ VhD,2,1, with nel = 8, of the smooth

one-dimensional step function φ = φ0.58. The vertical dashed lines indicate the element bound-
aries.

function (3.2) with parameter a = 0.58 in Fig. 10. Here, we display several sharp

finite element approximations with quadratic basis functions (p = 2) and regularity

α = 1. The finite element approximation requires at least 2 elements to capture the

sharp layer. There thus necessarily exists an element Ki for which Gφ,Ki(φ
h) > 0,

and the constrained best approximation problem (4.48a)–(4.48b) therefore has no

solution.

In general, B-spline basis functions of degree p have the following local support:

supp(Ni,p) = (ξi, ξi+p+1), (4.60)

which depends on the regularity α. The B-spline basis function Ni,p has support in

at most p− k+ 2 = α+ 2 elements. Neighboring B-spline basis functions share the

support

supp(Ni,p) ∩ supp(Ni+1,p) = (ξi+1, ξi+p+1), (4.61)

which consists of at most α + 1 elements. With the aim of finding a subdivision

of Ω that permits the sharpest approximations, we select ωj as the union of α +

1 neighboring elements. We subdivide domain Ω into disjoint subdomains ωj =

∪i∈IjKi, where Ij denotes an index set. Note that shifting groups of elements

yields a different subdivision (for α > 0). The construction is therefore not unique

and we consider α + 1 possibilities. For the first index set I1 we have the options

{1}, . . . , {1, . . . , α+1}. The consecutive index sets contain the next α+1 consecutive

numbers, where the last set terminates with the last element number. We visualize

two possible subdivisions in Fig. 11.

In Fig. 12, we visualize the H1
0 -best approximation φh ∈ VhD;2,1 of the smooth

step function subject to Gibbs constraints on the subdomains of both subdivisions.

We see that both approximations are completely free of over- and undershoots. In

general, the existence of a feasible solution of the constrained best approximation

problem with α ≥ 1 is an open question.
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(a) Subdivision 1 (b) Subdivision 2

Fig. 11. The two possible subdivisions for Vh2,1 when nel = 8. The vertical dashed lines represent

the element boundaries.

(a) Subdivision 1 (b) Subdivision 2

Fig. 12. The H1
0 -best approximation φh ∈ VhD;2,1, with nel = 8, of the smooth step function

φ = φ0.58, subject to Gibbs constraints on each of the subdomains illustrated in Fig. 11.

5. Eliminating the Gibbs Phenomenon in Higher Dimensions

In this section, we extend the strategy to eliminate the Gibbs phenomenon pre-

sented in Sec. 4 to higher dimensions. We first introduce the Gibbs constraints for

the elimination of the Gibbs phenomenon in general function spaces in Sec. 5.1.

After that, in Sec. 5.2, we discuss the Gibbs constraints in the context of best

approximations in finite element spaces.

5.1. Gibbs constraints

We present the construction of Gibbs constraints on a multidimensional given sub-

domain ω, by building upon the one-dimensional framework presented in Sec. 4.

The main distinguishing feature in the design of Gibbs constraints in higher dimen-

sions is the notion of directionality. As a consequence, the occurrence of over- and

undershoots now depends on the point of view, meaning that there exists no precise
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mathematical definition of monotonicity in higher dimensions. To construct a set

of constraints, we instead aim to preclude the Gibbs phenomenon in a particular

direction. We start by assuming an arbitrary direction, e, and afterwards suggest

a particular closed form expression for e.

Definition 5.1. (Directional Gibbs functional) The directional Gibbs functional

of the function φ∗ ∈ H1(Ω̃), with respect to the given function φ ∈ H1(Ω) and on

ω ⊂ Ω, is defined as

Gφ,ω(φ∗; e) :=

∫
ω

gφ(φ∗, e)dΩ, (5.1)

where the functional gφ is defined as

gφ(φ∗, e) := |e · ∇φ∗| − sgn(e · ∇φ∗)e · ∇φ = −sgn(e · ∇φ∗)e · ∇φ′, (5.2)

and e ∈ Rd is a unit vector (i.e. ‖e‖2 = 1).

In the following remark, we provide a motivation for this generalization of the

one-dimensional Gibbs functional.

Remark 5.1. (Pointwise motivation Gibbs constraint) Define the projection oper-

ator Pe : Rd → Rd in the direction e by Pev := Pev with projection matrix

Pe = e⊗e. The projections of ∇φ∗ and ∇φ in direction e are thus given by Pe∇φ∗
and Pe∇φ, respectively. The form of the local functional gφ(φ∗, e) is now motivated

by the following equivalence:

‖Pe∇φ∗‖2 − ‖Pe∇φ‖2 ≤ 0⇔ |e · ∇φ∗| ≤ |e · ∇φ|
sgn(Pe∇φ∗ · e) = sgn(Pe∇φ · e)⇔ sgn(e · ∇φ∗) = sgn(e · ∇φ)

}
⇔ gφ(φ∗, e) ≤ 0.

(5.3)

We have the following simple, but important, property.

Proposition 5.1. (Invariance of directional Gibbs functional opposite direction)

The directional Gibbs functional is invariant with respect to flipping the sign of the

direction e

Gφ,ω(φ∗;−e) = Gφ,ω(φ∗; e). (5.4)

To proceed, we provide a short study on the functional gφ = gφ(φ∗, e). In

the following proposition, we comment on the sign thereof, depending on the unit

vector e.

Proposition 5.2. (Sign of directional gφ) The sign of the functional gφ(φ∗, e)

depends in the following way on the unit vector e:

gφ(φ∗, e) < 0⇔
{

e · ∇φ′ > 0 and e · ∇φ∗ > 0 if e · ∇φ > 0,

e · ∇φ′ < 0 and e · ∇φ∗ < 0 if e · ∇φ < 0,
(5.5a)

gφ(φ∗, e) = 0⇔ e · ∇φ∗ = 0 or e · ∇φ′ = 0, (5.5b)
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∇φ′

∇φ∗

∇φ

gφ < 0

gφ > 0

gφ > 0

gφ < 0

gφ = 0

gφ = 0

gφ = 0

gφ = 0

Fig. 13. (Color online) Two-dimensional visualization of the sign of gφ = gφ(φ∗, e) for a specific

case. A unit vector e in the green region corresponds to gφ(φ∗, e) < 0, in the red region to
gφ(φ∗, e) > 0, and at the intersections to gφ(φ∗, e) = 0.

gφ(φ∗, e) > 0⇔
{

e · ∇φ′ < 0 or e · ∇φ∗ < 0 if e · ∇φ > 0,

e · ∇φ′ > 0 or e · ∇φ∗ > 0 if e · ∇φ < 0.
(5.5c)

We provide a visualization of the sign of gφ(φ∗, e) for varying direction e for a

two-dimensional scenario in Fig. 13.

In general, there always exists a direction e for which gφ(φ∗, e) > 0, as expressed

in the following proposition.

Proposition 5.3. (Supremum of gφ(φ∗, e)) The supremum of gφ(φ∗, e) is given by

sup
‖e‖2=1

gφ(φ∗, e) =

{
b · ∇φ′ if ∇φ∗ · ∇φ′ ≥ 0,

‖∇φ′‖2 if ∇φ∗ · ∇φ′ < 0,
(5.6)

where b ∈ {a ∈ Rd : ‖a‖2 = 1,a · ∇φ∗ = 0}.

Proof. Distinguish the two cases: (i) ∇φ∗ · ∇φ′ < 0 and (ii) ∇φ∗ · ∇φ′ ≥ 0.

(i) If e · ∇φ∗ ≥ 0, then the supremum of gφ is ‖∇φ′‖2, which is attained at

e = −∇φ′/‖∇φ′‖2. Similarly, if e · ∇φ∗ < 0, then the supremum of gφ is again

‖∇φ′‖2, which is then attained at e = ∇φ′/‖∇φ′‖2.

(ii) If e ·∇φ∗ ≥ 0, then gφ is a decreasing function in e ·∇φ∗. Therefore, gφ attains

its supremum when e·∇φ∗ = 0. Similarly, if e·∇φ∗ < 0, then gφ is an increasing

function in e · ∇φ∗. Again, gφ attains its supremum when e · ∇φ∗ = 0.

Propositions 5.2 and 5.3 show that demanding the elimination of the Gibbs

functional in each possible direction, which might intuitively yield the most desir-

able result, is not prudent: selecting the direction e to maximize gφ = gφ(φ∗, e)

and subsequently using this in the Gibbs constraint would only yield (i) the zero
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approximation φ∗ = 0 and (ii) the perfect approximation φ∗ = φ as feasible solu-

tions. To proceed, we must thus select a direction e that leads to both suitable

and practical constraints. The relevant directions to consider are functions of the

(approximate) solution gradients: (i) e = ∇φ/‖∇φ‖2, (ii) e = ∇φ∗/‖∇φ∗‖2 and

(iii) e = ∇φ′/‖∇φ′‖2 leading to the expressions

gφ

(
φ∗,

∇φ
‖∇φ‖2

)
= −|∇φ · ∇φ∗|−1‖∇φ‖−1

2 (∇φ · ∇φ)(∇φ · ∇φ′), (5.7a)

gφ

(
φ∗,

∇φ∗
‖∇φ∗‖2

)
= −‖∇φ∗‖−1

2 ∇φ∗ · ∇φ′, (5.7b)

gφ

(
φ∗,

∇φ′
‖∇φ′‖2

)
= −‖∇φ′‖|∇φ∗ · ∇φ′|−1∇φ∗ · ∇φ′. (5.7c)

Insisting compatibility with the one-dimensional case requires the choice of

direction e = ∇φ∗/‖∇φ∗‖2, which we focus on exclusively in the following.

Definition 5.2. (Gibbs functional and constraint) The Gibbs functional of the

function φ∗ ∈ H1(Ω̃), with respect to the given function φ ∈ H1(Ω) and on ω ⊂ Ω,

is defined as

Gφ,ω(φ∗) :=

∫
ω

gφ(φ∗)dΩ, (5.8)

where the functional gφ is defined as

gφ(φ∗) :=

{
−‖∇φ∗‖−1

2 ∇φ∗ · ∇φ′ if ∇φ∗ 6= 0,

0 if ∇φ∗ = 0.
(5.9)

The associated Gibbs constraint reads

Gφ,ω(φ∗) ≤ 0. (5.10)

Note that the Gibbs functional is frame-invariant, and that the properties of

Proposition 4.2 and Lemma 4.4 are inherited from the one-dimensional case.

5.2. Gibbs constraints for finite element best approximations

In this section, we apply the Gibbs constraints to finite element best approxima-

tions. Again, we consider the following general form of the best approximation

problem:

find φh ∈ VhD;p,α such that

φh = arginf
θh∈Kp,α

‖φ− θh‖H, (5.11a)

where the feasible set Kp,α is defined as

Kp,α := {φh ∈ VhD;p,α : Gφ,ωj (φ
h) ≤ 0, j = 1, . . . , J}. (5.11b)
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We first consider discontinuous finite element approximation spaces (α = −1).

Analogous to the one-dimensional case, we consider (5.11a)–(5.11b) with H = IP,

i.e. the interior penalty-best approximation. We select the subdomains ωj as the

finite elements Kj , j = 1, . . . , nel. Feasibility of the constrained optimization prob-

lem is a consequence of the existence of an elementwise constant solution φh,

for which Gφ,Kj (φ
h) = 0. Again, we may analyze the solution properties via the

KKT conditions (4.49). In case of homogeneous boundary conditions, we have

(φh, φ′)H ≥ 0 (Lemma 4.9). In Fig. 14, we visualize the interior penalty-best approx-

imation φh ∈ VhD;p,−1, p = 1, 2 of the profile of example 1, subject to the elementwise

Gibbs constraints. We observe that the constrained interior penalty-best approxi-

mations display a significant reduction of over- and undershoots compared to the

nonconstrained solutions depicted in Sec. 3.2.

Next, we study the case with regularity α = 0. Consider again the example with

the sharp layer skew to the mesh. In Fig. 15, we visualize the sharpest possible

approximation φh ∈ VhD,1,0, and plot the elementwise values of the Gibbs functionals

Gφ,Ki(φ
h). We note that the sharpest approximation is interpolatory. Nevertheless,

the Gibbs constraints are not fulfilled elementwise. Similar to the one-dimensional

case, one could define ωj as the collection of several elements. However, a careful

examination reveals that the only possible choice is the collection of all elements ω =

∪nel
j=1Kj , which would constitute a rather weak condition. It appears impossible to

obtain a feasible solution when using subdomains ωj that consist of a few elements.

This is a consequence of the support of the basis functions, which contain multiple

elements. The Gibbs constraints for any collection of elementsKi on the off-diagonal

(a) p = 1 (b) p = 2

Fig. 14. The interior penalty-best approximation φh ∈ VhD;p,−1 of the smooth step function, with

nel = 8× 8, subject to elementwise Gibbs constraints, for different p.
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(a) The approximation φh ∈ Vh1,0
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(b) Elementwise Gibbs functionals

Fig. 15. The sharpest possible approximation φh ∈ Vh1,0 (a) and the corresponding elementwise

values of the Gibbs functionals Gφ,Ki (φ
h) (b).

0 1
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1

0
1

01

Fig. 16. Subdivision of an 8 × 8 element domain into groups of maximum 3 × 3 elements with
approximation space VhD,2,1. The right and bottom inset figures display the univariate basis func-
tions along the corresponding axes.
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with x ≥ y (x ≤ y) would enforce φhKi to be close to 1 (and −1). This is in conflict

with the continuity requirement of the finite element approximation space V hD,1,0,

and persists when using higher-order polynomials.

Lastly, we consider higher-order smooth finite element approximation spaces

(α ≥ 1). The above discussed infeasibility of the optimization problem also applies

to higher-order smooth approximations. We illustrate this for the smooth step func-

tion with a quadratic B-spline approximation space VhD,2,1. Consider a subdivision

into groups of maximum 3× 3 elements, as visualized in Fig. 16. In order to satisfy

the Gibbs constraint on the element group on the middle-bottom we must have

φh = −1 in the blue boxed element. Similarly, in the black boxed element we require

φh = 1. These two conditions are incompatible.

6. Conclusions

In this paper, we constructed a set of integral constraints with the aim of eliminating

the Gibbs phenomenon in finite element best approximations. We first provided an

overview of the Gibbs phenomenon for best approximations in finite element spaces.

We illustrated with computational examples that spurious oscillations occur in one

and two dimensions for standard projections onto finite element spaces of arbitrary

degree and regularity (with the exception of the one-dimensionalH1
0 -projection with

linear continuous finite elements). The proposed constraints build onto the concept

of total variation. In this regard, we established in one dimension the interrelation

between the Gibbs constraint and interpolatory and monotonic approximations,

as well as the maximum principle. Furthermore, we displayed in one dimension

that the proposed constraints may be applied elementwise when the finite element

space is either discontinuous or C0-continuous. For higher regularity finite element

spaces, the integration domains of the constraints depend on multiple elements. We

showed that enforcing the constraints removes over- and undershoots for continuous

finite element spaces, and suppresses them for discontinuous finite element spaces.

In higher dimensions, the constraints act in the direction of the solution gradient.

The applicability of the constraints is then limited to discontinuous finite element

spaces. We demonstrated that also in this case over- and undershoots are severely

reduced.

We recognize two open problems that require further investigation. The first

is linked to the last observation, namely the extension of the set of constraints

to continuous finite element spaces in higher dimensions. As a consequence of the

overlapping support of the basis functions, it is hard to identify and eliminate

the Gibbs phenomenon on a local level. The second open problem is the con-

struction of a finite element method that incorporates these constraints in practi-

cal computations. We conjecture that a possible resolution lies in the variational

multiscale framework, in particular through the work of Evans et al.7 and ten

Eikelder.41
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