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Ostwald ripening and breakup characteristics of
the advective Cahn-Hilliard equation: The role of

free energy functionals

By M. F. P. ten Eikelder† AND M. A. Khanwale

Ostwald ripening, the vanishing of small droplets or bubbles that arise during breakup,
poses a significant challenge in the computational modeling of a wide range of multiphase
systems. This process leads locally to a loss of mass in one of the phases, even when the
total mass is conserved. The numerical breakup of the model (breakup due to insufficient
resolution) and the mitigation of Ostwald ripening can lead to the model showing different
breakup behavior under low numerical resolutions. In this paper, within the context of the
advective Cahn-Hilliard phase-field model, we explore the influence of different free energy
functionals on this process through numerical simulations. Our simulations show that the
Ginzburg-Landau potential leads to Ostwald ripening. This phenomenon is minimized
and leads to a desirable delay in numerical breakup when adopting the Flory-Huggins
potential. These findings have important implications in high-fidelity multiphase simula-
tions, particularly in high–Reynolds number flows involving breakup.

1. Introduction

Multiphase flow is ubiquitous in various fields of science and engineering, where the in-
teraction between different phases plays a pivotal role. Understanding and predicting these
complex flow phenomena requires robust modeling and discretization techniques. Phase-
field modeling and computation that utilizes thermodynamic arguments has emerged as a
mature modeling technology, offering solutions to the challenges inherent in multiphase
flow (Anderson et al. 1998; Gomez & van der Zee 2018). It addresses both physical
modeling and geometrical representation through a smooth scalar phase field variable
that simultaneously represents a physical quantity (e.g., a concentration) and accounts for
geometrical and topological changes in the interface between the two phases. This method
allows for modeling complex flow physics, including capillary effects, phase transitions,
and small-scale dynamics, where arbitrary topological transitions occur. Consequently,
phase-field modeling provides a significant advantage over traditional methods, which be-
come intractable for problems involving such intricate dynamics, especially when modeling
multiphysics phenomena (for example, see (Mirjalili et al. 2020; Roccon et al. 2023)).

The Cahn-Hilliard (CH) equation is a pivotal phase field model for the description of
multiphase systems (Cahn & Hilliard 1958). This equation provides a robust framework for
understanding phase separation and coarsening in binary mixtures by minimizing a free
energy functional (Elliott & Garcke 1996). It plays a central role in the Navier-Stokes Cahn-
Hilliard (NSCH) model, which describes the evolution of viscous incompressible isothermal
fluid mixtures with surface tension (Abels et al. 2012; Lowengrub & Truskinovsky 1998;
ten Eikelder et al. 2023). This model is popular for the simulation of a wide range of
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complex fluid dynamics with multiple phases—see, e.g., Khanwale et al. (2020); Guo et al.
(2022); Khanwale et al. (2022a); ten Eikelder & Schillinger (2024).

One of the major challenges in the simulation of multiphase systems is the persistence
of small droplets/bubbles that arise during breakup events, particularly in the case of
high–Reynolds number situations, as this affects the droplet size distribution, an important
quantity of interest. In the existing NSCH simulations of such systems, at a given mesh
resolution, larger droplets typically grow at the expense of smaller ones due to violation of
boundedness and minimization of the energy functional of the partial differential equation
(PDE) system, especially for the small droplets, which are typically underresolved (Yue
et al. 2007). This leads to the eventual disappearance of such small droplets or bubbles, a
process known as Ostwald ripening or coarsening (Voorhees 1985). If these droplets do
not coalesce, the Ostwald-ripening effect in existing NSCH simulations is unphysical.

A commonly used functional in CH is the Ginzburg-Landau (GL) potential, which
characterizes the two phases by a double-well structure (Ginzburg & Landau 1950). While
effective in many scenarios, the GL potential does not inherently preserve the bounds of
the phase concentration, leading to potentially unphysical numerical results. This bound
violation is not due to numerical discretization; it is a feature of the GL potential for the
CH phase-field model. These bound violations depend on the feature size (droplet/filament)
relative to the minimum numerical resolution of the simulation. In practice, a clipping
procedure pulls back the phase field to its saturation bounds to calculate mixture density
and viscosity, thereby preserving realizability. However, this retraction can lead to other
cascading errors. To minimize this effect, different strategies have been used in the
literature [e.g., penalty fluxes (Roccon et al. 2023), degenerate mobilities (Dai & Du 2016;
Khanwale et al. 2022b) and dynamic interface thickness (Khanwale et al. 2022b)].

In this paper, we consider the Flory-Huggins (FH) potential which is a bound-preserving
free energy potential rooted in the thermodynamics of mixtures (Flory 1953). Therefore,
the main objective of this paper is to study the role of the free energy functional on
the Ostwald ripening within the CH framework. We perform numerical simulations of
the advective CH model using GL and FH potentials and discuss their effect on the
small-scale droplet/bubble stability. Our results highlight the advantages of using the FH
potential in preventing unphysical Ostwald ripening.

Adopting the FH potential of course introduces several challenges for numerical simula-
tions. As a secondary objective, we propose a numerical scheme for the mixed formulation
of the CH model that permits large time steps. We refer readers to Wang et al. (2020);
Barrett et al. (1999) for other methods for the CH with the FH potential, and note the
paper of Chen et al. (2024) for the simulation of the NSCH model with the FH potential
with matching densities.

2. The Cahn-Hilliard model

2.1. Governing equations and properties

Let Ω ⊂ Rd, d = 2, 3, be an open, connected spatial domain with boundary Γ = ∂Ω,
and the unit outward normal denotes n. We consider the evolution dynamics of a binary
mixture in Ω governed by the advective CH equation. The problem under consideration
consists of solving the strong formulation: given the (time-dependent) vector field v =
v(x, t) : Ω̄× T → R, find c = c(x, t) : Ω̄× T → [0, 1] such that

∂tc+ div(cv)− div (m∇µ) = 0, in Ω, (2.1a)
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µ− ε−1w(c) + ε∆c = 0, in Ω, (2.1b)

(m∇µ) · n = 0, in Γ, (2.1c)

∇c · n = 0, in Γ, (2.1d)

with c(x, 0) = c0(x) in Ω, where the time domain is T = (0, T ) with T > 0, and where we
assume ∇ · v(x, t) = 0 in Ω. Here c = c(x, t) denotes the concentration (with physical
bounds c ∈ [0, 1]) of one of the two components, w = w(c) is the derivative of a local
potential function W = W (c) (W ′(c) = w(c)) and µ is the chemical potential. Additionally,
m denotes the concentration-dependent positive mobility quantity m = m(c) ≥ 0, and ε
is a positive constant that represents the interface width. We choose m(c) = c+(1− c)+,
where a+ = (a+ |a|)/2 is the positive part of a ∈ R. Eq. (2.1a) describes the CH evolution
dynamics, Eq. (2.1b) defines the chemical potential µ and Eqs. (2.1c, 2.1d) prescribe the
homogeneous boundary conditions.

The Helmholtz free energy (Ψ) associated with the system (2.1) is

Ψ = Ψ(c,∇c) =

∫

Ω

ψ(c,∇c) dv, ψ =
1

ε
W (c) +

1

2
ε∥∇c∥2, (2.2)

where ψ is the Helmholtz free energy density, and where v is the volume element. The
chemical potential in Eq. (2.1b) is defined as the Fréchet derivative of Eq. (2.2):

µ =
δΨ

δc
=
∂ψ

∂c
− div

(
∂ψ

∂∇c

)
. (2.3)

Next, we observe from Eqs. (2.1a) and (2.1c) that the concentration is a globally conserved
quantity, i.e.,

∫
c(x, t) dv =

∫
c(x, 0) dv for all t ∈ T . Additionally, in the absence of

advection, we have the energy-dissipation law:

d

dt
Ψ = −

∫

Ω

m∥∇µ∥2 dx ≤ 0, (2.4)

where ∥ · ∥ is the standard Euclidean norm.

2.2. Free energy potentials

The GL double-well potential W (c) = G(c) and its derivative w(c) = g(c) are defined as

G(c) = 4c2(1− c)2, g(c) = 8c(2c− 1)(c− 1). (2.5)

The structure of the GL potential reveals the underlying problem. Even though the
minima of the double-well potential G(c) are at c = ±1, it is well-defined for all c ∈ R.
As such, it contains no mechanism to keep c within the physical bounds [0, 1].

The FH potential W (c) = F (c) and its derivative w(c) = f(c) are defined as

F (c) = a3 (c log(c) + (1− c) log(1− c) + a1c(1− c) + a2) , (2.6a)

f(c) = a3 (log(c)− log(1− c) + a1(1− 2c)) , (2.6b)

where a1, a2 and a3 are dimensionless constants. In contrast to the GL potential, the FH
potential precludes values of c outside its physical bounds. As such, the FH theory is
inherently a bound-preserving theory (Elliott & Garcke 1996). In Figure 1, we visualize
the free energy and its derivative w(c) = W ′(c) for the GL and the FH model for s = 2,
where the parameter values are defined in Table 1. We observe that g(c) is well-defined for
all values of c, whereas f(c) becomes unbounded near c = ±1 and thus acts as a physical
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figure 1. Potential W (c) and its derivative w(c) = W ′(c) for the GL (G), and the FH
potential (F ). The parameter values correspond to s = 2; see Table 1. (a) Potentials
W (c), (b) Derivative of potentials w(c).
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figure 2. FH potentials F (c) = Fs(c), for s = 1, 2, 3. (a) No zoom, (b) zoom.

barrier for the phase-field c to go out of bounds. Next, we note that the parameter a1
determines the shape of the FH free energy, and, in particular, it admits a double-well
shape for a1 > 2 and a single-well profile for a1 ≤ 2. A larger a1 shifts the minima
closer to c = 0 and c = 1. The parameters in Figure 1 are selected so that the minima
are near c = 0.01 and c = 0.99, where a2 and a3 are chosen so that mincF (c) = 0 and
maxcF (c) = 1. In Figure 2, we show the minima for various values of a1. Ideally, the
value of a1 should be chosen to be as high as numerically possible so that the saturation
is close to 0 or 1. We set cr = c2 − c1 with c1 < c2 the locations of the minima (with
c1 + c2 = 1).

2.3. Nondimensionalization

We now perform the nondimensionalization of the advective CH system [Eq. (2.1)].
Introducing a characteristic length and time scales L0 and T0, the units of the quantities in
Eq. (2.1) are: [c] = 1, [v] = L0T

−1
0 , [µ] = L−1

0 , [ε] = L0, [m] = L3
0T

−1
0 . The dimensionless

variables are

x∗ =
x

L0
, u∗ =

uT0
L0

, t∗ =
t

T0
, m∗ =

m

M0
, µ∗ = µL0, (2.7)
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s a1 a2 a3 c1 c2

1 5.346773 0.004878 0.385549 0.005 0.995
2 4.688895 0.009581 0.511605 0.01 0.99
3 4.314010 0.014143 0.625785 0.015 0.985

table 1. Table of values for s, a1, a2, a3 and xmin.

where M0 is a characteristic mobility. We note that the concentration c and W ′(c) are
dimensionless quantities. The dimensionless system takes the form

∂t∗c+ div∗(cv∗)− 1

Pe
div∗ (m∗∇∗µ∗) = 0, (2.8a)

µ∗ − Cn−1w(c) + Cn∆∗c = 0, (2.8b)

(m∗∇∗µ∗) · n = 0, (2.8c)

∇∗c · n = 0. (2.8d)

The dimensionless coefficients are the Cahn number Cn = ε/L0, which expresses relative
interface width, and the mobility Peclet number Pe = (L2

0)/(T0M0), measuring the ratio
of advection to diffusion. We suppress the star symbols in the remainder of this paper.

3. Numerical scheme

3.1. Spatial discretization

We choose V = H1(Ω) for the trial and weighting function spaces. The variational formu-
lation reads

Find (c, µ) ∈ [L2(T ;V) ∩H1(T , L2(Ω))]2 such that for all (v, q) ∈ [V]2:

(v, ∂tc)Ω + (v,v · ∇c)Ω +
1

Pe
(∇v,m∇µ)Ω = 0, (3.1a)

(q, µ)Ω − Cn (∇q,∇c)Ω −
1

Cn
(q, w(c))Ω = 0, (3.1b)

where (·, ·)Ω is the standard L2(Ω) inner product on the interior. Integration by parts
shows that Eq. 3.1 is for smooth solutions equivalent to the strong formulation Eq. 2.8.

We apply the Bubunov-Galerkin finite element methodology to discretize in space. For
this purpose, we introduce the conformal discrete space Vh ⊂ V spanned by C0-finite
element basis functions. The semi-discrete approximation of (3.1) takes the form

Find (ch, µh) ∈ [L2(T ;Vh) ∩H1(T , L2(Ω))]2 such that for all (vh, qh) ∈ [Vh]2:

(
vh, ∂tc

h
)
Ω

+
(
vh,v · ∇ch

)
Ω

+
1

Pe

(
∇vh,mh∇µh

)
Ω

= 0, (3.2a)

(
qh, µh

)
Ω
− Cn

(
∇qh,∇ch

)
Ω
− 1

Cn

(
qh, wh

)
Ω

= 0, (3.2b)

where ch(0) = ch0 , µh(0) = µh0 , and mh = m(ch) and wh = w(ch) in Ω.
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3.2. Temporal discretization

To introduce the time-discretization, we subdivide the time domain T into elements
Tn = (tn, tn+1) of equal size ∆t = tn+1 − tn with time level n = 0, 1, ..., N . We adopt the
conventional notation to denote the time level of a quantity with a subscript n, i.e., chn
and µhn denote the concentration and chemical potential at time level n, respectively. The
intermediate time level and time derivative of the concentration are given by

chn+1/2 := 1
2 (chn + chn+1), [[ch]]n :=

1

∆t
(chn+1 − chn). (3.3)

The method in fully discrete form now reads
Given chn ∈ Vh, find (chn+1, µ

h
n+1) ∈ [Vh]2 such that for all (vh, qh) ∈ [Vh]2:

(
vh, [[ch]]n

)
Ω

+
(
vh,v · ∇chn+1/2

)
Ω

+
1

Pe

(
∇vh,m(chn+1/2)∇µhn+1

)
Ω

= 0, (3.4a)

(
qh, µhn+1

)
Ω
− Cn

(
∇qh,∇chn+1/2

)
Ω
− 1

Cn

(
qh, whn+1/2

)
Ω

= 0. (3.4b)

The definition of whn+1/2 depends on the free energy functional. For the GL Helmholtz

free energy W (c) = G(c), we take whn+1/2 = w(chn+1/2), and for the FH free energy

W (c) = F (c), we select the first-order approximation

whn+1/2 = a3

(
log(chn)− log(1− chn) + a1(1− 2chn) + (λ+ 1)

(
chn+1

chn
− 1− chn+1

1− chn

))
,

(3.5)

where λ is a positive numerical parameter. The definition given in Eq. 3.5 coincides with
the discretization of the chemical potential of the Allen-Cahn equation of Wang et al.
(2020). Their scheme ensures bound preservation for the Allen-Cahn equation and is
constructed to guarantee energy stability. The latter is inherited from the CH equation
(without advection). In particular, we have

F (chn+1)− F (chn) ≤ whn+1/2(chn+1 − chn). (3.6)

4. Numerical experiments

4.1. Problem setup

We use the two-dimensional swirl benchmark problem (Bell et al. 1989) to compare the
boundedness and Ostwald-ripening properties of the advective CH equation of both free
energy functionals. A circle with c ≈ 1 and initial radius R0 = 0.15 is placed in the square
domain [0, 1]2 ⊂ Ω at location (x∗, y∗) = (0.35, 0.35) with concentration field c ≈ 0. The
circle is stretched out due to the divergence-free velocity field given by

v = A(t)(sin(2πy) sin(πx) sin(πx),− sin(2πx) sin(πy) sin(πy)), (4.1)

where A = A(t) = cos(πt/8) provides a periodic motion in T = (0, T ) with T = 8. This
causes the circle to stretch out for 0 < t < 4 and contract for 4 < t < T = 8. For small
Cn and large Pe we anticipate the final configuration (t = T ) to approximation the initial
configuration (t = 0).

We define the initial concentration profile as

ch0 (x) =
1

2

(
1− cr tanh

√
(x− x∗)2 + (y − y∗)2 −R0

Cn
√

2

)
, (4.2)
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so that ch0 ≈ c1 outside the circle, and ch0 ≈ c2 inside of it. For the GL potential, we
set cr = 1, and for the FH potential, we choose the parameters of s = 2 leading to
cr = 0.98 and λ = 2. We first solve the CH equation without advection until a stable
configuration is reached. We use this concentration field as the initial configuration for the
advective CH simulations. All our simulations are performed in FEniCS and utilize linear
triangular finite elements for both the concentration and the chemical potential (Logg
et al. 2012). We use as mesh width h = 1/256, and set ∆t = 4 × 10−3 so that the
Courant-Friedrichs-Lewy (CFL) number approximately equals 1. We select a relatively
large interface width parameter of Cn = 4h to realize the breakup of the stretched circle
and take Pe = 8/(3Cn2).

We visualize the evolution of the concentration field for GL and FH potentials in
Figure 3. In both simulations, the circle breaks up, and smaller circles are formed. The
key difference between the two simulations is that the small circles vanish for the GL
potential but persist for the FH potential. We observe the boundedness property of the
FH simulation. In contrast, the GL setup violates bounds; it yields overshoots of more
than 2%. The breakup of the filament (which is purely numerical) is delayed in the case
of FH and the filament maintains its shape longer compared to the GL case. This delayed
breakup is a useful property, as any breakup in this configuration is purely numerical
(because of the absence of surface tension in 2D), and prevention and minimization of the
numerical breakup of a method for a given mesh resolution is desirable.

Both simulations reasonably recover the initial profile. The recovery depends on the
interface thickness parameter and mesh resolution. A detailed convergence analysis of
shape recovery as a function of these factors is a future research direction.

5. Conclusions and outlook

In this paper we have compared Ostwald-ripening phenomena within the context of
Cahn-Hilliard dynamics using numerical simulations. We have adopted two free energy
functionals, the Ginzburg-Landau and the Flory-Huggins potentials. To enable large
time-step simulations with the latter, we have proposed a novel numerical scheme. Our
simulations demonstrate that adopting the Ginzburg-Landau potential violates the physi-
cal bounds and shows Ostwald ripening. In contrast, using the Flory-Huggins potential
provides a bound-preserving simulation free of Ostwald ripening. Potential future research
directions include (i) a detailed convergence analysis and comparison of the Flory-Huggins
case with the Ginzburg-Landau case; (ii) energy-stable and bound-preserving discretiza-
tions for a Flory-Huggins Navier-Stokes Cahn-Hilliard model; (iii) the extension of the
study on Ostwald ripening to high–Reynolds number multiphase flows (see, e.g., Saurabh
et al. (2023)), N-phase flows (see, e.g., Huang et al. (2020); ten Eikelder (2024)), and
mixture models (see e.g. Abels (2024); ten Eikelder et al. (2024)), leveraging energy-stable
schemes to ensure robust and accurate simulations.
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