
Computers and Fluids 277 (2024) 106286

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Space–time computations of exactly time-periodic flows past hydrofoils
Jacob E. Lotz a,∗, Marco F.P. ten Eikelder b, Ido Akkerman a

a Delft University of Technology, Department of Mechanical Engineering, P.O. Box 5, 2600 AA Delft, The Netherlands
b Institute for Mechanics, Computational Mechanics Group, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany

A R T I C L E I N F O

Keywords:
Periodic flow
Space–time methods
Isogeometric analysis
Variation multiscale analysis
Large-eddy simulation
Weak boundary conditions

A B S T R A C T

The computation of periodic flows is typically conducted over multiple periods. First, a number of periods is
used to develop periodic characteristics, and afterwards statistics are collected from averages over multiple
periods. As a consequence, it is uncertain whether the numerical results are exactly time-periodic, and
additionally, the time domain might be needlessly long. In this article, we circumvent these concerns by using
a time-periodic function space. Consequently, the boundary conditions and solutions are exactly periodic. We
employ the isogeometric analysis framework to achieve higher-order smoothness in both space and time. The
discretization is performed using residual-based variational multiscale modeling and weak boundary conditions
are adopted to enhance the accuracy near the moving boundaries of the computational domain. We enforce
the time-periodic boundary condition within the isogeometric discretization spaces, which converts the two-
dimensional time-dependent problem into a three-dimensional boundary value problem. Furthermore, we
determine the boundary velocities of moving hydrofoils directly from the computational mesh and use a
conservation methodology for force extraction. Application of the computational setup to heaving and pitching
hydrofoils displays very accurate and exactly periodic results for lift and drag.
1. Introduction

Periodic flows are ubiquitous in a large number of industrial ap-
plications and natural features. Prototypical examples include the flow
around submerged propellers, wind turbines, or rotating flows in tur-
bomachines and engines and the pulsatile flow of blood. Various chal-
lenges arise in the design of practical numerical simulations of these
flows. On top of the well-known complications centered around the
inertia-driven character and the imposition of boundary conditions, the
periodic nature adds novel peculiar hurdles. The typical strategy of
simulating a periodic flow problem is to perform an unsteady computa-
tion in which the flow develops periodic characteristics [1–3]. As such,
the computations are usually not exactly periodic, and the temporal
range may be excessively long. Moreover, a user-defined criterion of
the characteristics of the flow is inevitable and the flow is never strictly
periodic. In this work we exploit the periodic nature of the problem and
use a space–time finite element method in the framework of residual-
based variational multiscale (VMS) methods, isogeometric analysis and
weak boundary conditions. Particular emphasis is on the application to
heaving and pitching hydrofoils.

The concept of space–time finite elements may be traced back to the
late sixties, with contributions by Fried [4] and Oden [5,6] on the gen-
eration of finite element models in the time domain. In time-dependent
problems, the standard is to separate the discretization of the time
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(e.g. finite difference schemes) and space (e.g. Galerkin methods). This
is often referred to as the semi-discrete method. The idea of space–
time finite element methods is to adopt the variational approach in the
space–time setting such as in [7], where the space–time formulation is
used in conjunction with the Galerkin/Least-squares stabilization. This
allowed space–time computations for three-dimensional compressible
and incompressible flows [8,9]. Contributions to accuracy and stability,
along with the use of Fourier-analysis, include the stabilized methods
in the space–time framework for the advection–diffusion equation and
Navier–Stokes equation [10–12]. This space–time framework was orig-
inally formulated for stationary problems and is extended to domains
with moving boundaries by Tezduyar and collaborators [13,14]. Space–
time computations of 2D time-periodic flows around fixed, oscillating,
and bobbing hydrofoils were extensively covered in [1,15,16]. These
were the first space–time computations of their kind. A few years
later, the VMS framework [17,18], encompassing many existing stabi-
lized methods, was proposed. The framework was originally introduced
for stationary problems. In [19] it was argued that the most the-
oretically coherent framework for the extension to time-dependent
problems is the space–time context. The most popular applications
of the VMS methodology for time-dependent problems are however
in the semi-discrete setting. A notable contribution in this regard is
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the work [20] that presented a variationally consistent VMS method-
ology for turbulent flows called residual-based variational multiscale
RBVMS). This method is often used in combination with weak bound-
ry conditions [21]. Recently, the popular Nitsche’s method for the
mposition of weak boundary conditions has been identified as a vari-
tional multiscale formulation [22]. The RBVMS method opened the
oor for the development of a novel class of small-scale models for
arge-eddy simulations, including dynamic small-scales [23–25] and
iscontinuity capturing [26,27]. The last important development with
mplications for the space–time framework that we succinctly discuss,
s the introduction of isogeometric analysis [28,29]. In contrast to
lassical space-finite element methods, isogeometric analysis offers the
ossibility of arbitrary smooth finite element basis functions. This
echnique was initially adopted for spatial discretizations, yet it offers
ich opportunities in the space–time setting [30–33]. On top of the
ore widely known advantages of isogeometric analysis, as pointed

ut as early as in 2012 [34–36], the adoption of it in the space–
ime context is particularly beneficial for an accurate representation of
oving boundaries and a higher continuity in the temporal direction.
good overview of the history and the wide variety of applications

f the space–time method can be found in [37], including simulations
ith isogeometric analysis [38] and RBVMS discretization [34].

The existing space–time finite element methods form a versatile and
undamental class of methodologies for time-dependent problems in
luid mechanics. The space–time method can be adopted for the com-
utation of periodic flows, for example in [1,15,16]. However, just as
n the semi-discrete setting, such computations require a transient until
near-periodic state is reached. The numerical results are not strictly

eriodic. In this article, we circumvent these concerns by performing
omputations with exact time-periodicity. We compute the periodic
tate via enforcing the periodicity as a boundary condition in time,
ee also [39,40]. This turns the two-dimensional time-dependent model
nto a three-dimensional boundary value problem. Our numerical re-
ults show the exact periodicity without losing the expected accuracy
n the solutions. To this purpose we adopt a periodic space–time
odel of arbitrary continuity via isogeometric analysis. Furthermore,
e combine this with the usage of the RBVMS methodology and weak
oundary conditions, providing a robust periodic space–time method.
e show conservation properties of the proposed method and present
conservative traction evaluation. Last, we introduce mesh constraint

oundary velocities. We use our computational setup for the simulation
f incompressible flow past a prescribed periodically moving hydrofoil.

The paper is organized as follows. We describe the time-periodic
ontinuous space–time setup in Section 2, which fits within the more
eneral space–time framework. Next, in Section 3 we discuss the con-
ervation properties and the continuous force extraction method. In
ection 4 we provide results of numerical experiments considering the
esh-constraint boundary velocity, force extraction, and periodic flow.
he numerical experiments employ two spatial dimensions. We close
ith concluding remarks in Section 5.

. Periodic space–time formulation of the incompressible flow
quations

.1. Governing equations

Consider a time-dependent spatial domain 𝛺 = 𝛺(𝑡) ⊂ R𝑑 with
boundary 𝛤 = 𝛤int ∪ 𝛤ext composed of a time-dependent interior
𝛤int = 𝛤int(𝑡) and exterior part 𝛤ext. The outward unit normal to the
boundary 𝛤 is defined as 𝐧. Let us now consider a velocity field 𝐮 and
introduce the normal velocity 𝑢𝑛 = 𝐮⋅𝐧 with positive and negative parts
𝑢±𝑛 = 1

2 (𝑢𝑛± |𝑢𝑛|). We partition the exterior boundary into an inflow and
outflow part according to the definitions:

𝛤𝐷ext ∶=
{

𝐱 ∈ 𝛤 |𝑢n(𝐱) < 0
}

, (1a)
𝑁 { }
2

ext ∶= 𝐱 ∈ 𝛤 |𝑢n(𝐱) ≥ 0 . (1b)
Fig. 1. Sketch of the spatial domain with its boundaries, with inflow on the left.

The domain is depicted in Fig. 1.
We now consider the problem that reads in strong form:

𝜕𝑡𝐮 + 𝐮 ⋅ ∇𝐮 + ∇𝑝 − ∇ ⋅ (2𝜈∇𝑠𝐮) = 𝐟 in 𝛺, (2a)

∇ ⋅ 𝐮 = 0 in 𝛺, (2b)

𝐮 = 𝐠int in 𝛤int, (2c)

𝐮 = 𝐠ext in 𝛤𝐷ext, (2d)

−𝑝𝐧 + 𝜈∇𝐮 ⋅ 𝐧 + 𝑢−n 𝐮 = 𝟎 in 𝛤𝑁ext, (2e)

𝐮(⋅, 0) = 𝐮0 in 𝛺. (2f)

ere the unknown fields are the velocity 𝐮 = 𝐮(𝐱, 𝑡) and the pressure
= 𝑝(𝐱, 𝑡) with spatial coordinate 𝐱 and the time coordinate 𝑡 ∈  =

0, 𝑇 ) with final time 𝑇 > 0. We employ the standard notation for
he gradient (∇), the symmetric gradient (∇𝑠) and the divergence (∇⋅).
urthermore, 𝜈 denotes the (constant) kinematic viscosity, 𝐟 = 𝐟 (𝑡)
s a (time-dependent) external force, and 𝐠int = 𝐠int(𝑡) and 𝐠ext are
rescribed (time-dependent) velocities on the interior boundary and
nflow partition of the exterior boundary, respectively. We split the
rescribed no-slip velocity into a normal (𝐠𝑛) and tangential component
𝐠𝑡):

𝐠int = 𝐠𝑛 + 𝐠𝑡, (3a)

𝐠𝑛 = (𝐠int ⋅ 𝐧)𝐧, (3b)

𝑡 ⋅ 𝐧 = 0. (3c)

enoting the normal velocity of the domain boundary 𝛤int by 𝑣𝑛 = 𝐠𝑛 ⋅𝐧,
he normal component 𝐠𝑛 is prescribed by the relation 𝐠𝑛 = 𝑣𝑛𝐧.

The Eqs. (2) describe the incompressible Navier–Stokes equations,
ith the balance of linear momentum and the continuity equation in

2a) and (2b), the Dirichlet boundary conditions on the interior and the
nflow boundary in (2c) and (2d), the outflow boundary condition in
2e) and the initial condition in (2f).

.2. Space–time formulation

We introduce the (continuous) space–time domain 𝑄 = 𝛺 ×  as an
xtrusion of the spatial domain 𝛺 = 𝛺(𝑡). The boundary of 𝑄 consists of
n interior part 𝑃int = 𝑃int(𝑡) = 𝛤int(𝑡) ×, and an exterior part made up
f an inflow 𝑃𝐷ext = 𝛤𝐷ext × and an outflow 𝑃𝑁ext = 𝛤𝑁ext × contribution.
e visualize the setup in Fig. 2.
We introduce the space–time coordinate �̂� = [𝐱𝑇 𝑠𝑡]𝑇 =

𝑥1 ... 𝑥𝑑 𝑠𝑥𝑑+1] and the extended velocity vector �̂� = [𝐮𝑇 𝑠]𝑇 , where
is a velocity relating the time and space dimensions. For simplicity, 𝑠
an be chosen as 1.

In this work we focus on periodic flows and as such, we consider a
eriodically changing domain 𝛺 with period  :

|𝑡 = 𝛺|𝑡+ . (4)

dditionally, we require the prescribed external force 𝐟 and boundary
elocities to be periodic:
𝐟 (𝐱, 𝑡) = 𝐟 (𝐱, 𝑡 +  ), (5a)
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Fig. 2. Sketch of the space–time domain 𝑄 with its boundaries 𝑃 , with inflow on the
left, as an extrusion of the spatial domain 𝛺 in gray.

𝐠(𝐱, 𝑡) = 𝐠(𝐱, 𝑡 +  ). (5b)

The initial condition in (2f) is represented in the space–time setting by
the time-periodic condition:

𝐮(⋅, 0) = 𝐮(⋅,  ) in 𝛺. (6)

We take the final time as 𝑇 =  to cover one period.
Using these definitions, problem (2) transforms in the space–time

context into the steady state problem:

�̂� ⋅ ∇�̂�𝐮 + ∇𝑝 − 𝜈∇2𝐮 = 𝐟 in 𝑄, (7a)

∇ ⋅ 𝐮 = 0 in 𝑄, (7b)

𝐮 = 𝐠int in 𝑃int, (7c)

𝐮 = 𝐠ext in 𝑃𝐷ext, (7d)

−𝑝𝐧 + 𝜈∇𝐮 ⋅ 𝐧 + 𝑢−n 𝐮 = 𝟎 in 𝑃𝑁ext, (7e)

𝐮(⋅, 0) = 𝐮(⋅, 𝑇 ) in 𝛺. (7f)

n (7a) we have combined the first two members of (2a) into a single
erm via the identity:

𝑡𝐮 + 𝐮 ⋅ ∇𝐮 = �̂� ⋅ ∇�̂�𝐮, (8)

here ∇�̂� is the space–time gradient. The normal 𝐧 in (7e) is the
lassical spatial normal and can be extracted from the space–time
ormal �̂� = [𝑛1 ... 𝑛𝑑 𝑛𝑑+1]𝑇 via,

= 1
√

𝑛21 +⋯ + 𝑛2𝑑

⎡

⎢

⎢

⎣

𝑛1
⋮
𝑛𝑑

⎤

⎥

⎥

⎦

. (9)

The space–time outward normal �̂� has unit length in the norm ‖ ⋅ ‖𝐺𝑠
defined by

‖�̂�‖2𝐺𝑠 = �̂� ⋅𝐆𝑠�̂�, (10)

where 𝐆𝑠 is the space–time metric

𝐆𝑠 =
(

𝐈𝑑×𝑑 01×𝑑
0𝑑×1 𝑠2

)

. (11)

Furthermore, the normal velocity 𝑣𝑛 is related to the space–time veloc-
ity 𝑠 and the space–time normal �̂� via:

𝑣𝑛 = −𝑠
𝑛𝑑+1

√

𝑛21 + .. + 𝑛
2
𝑑

. (12)

2.3. Weak formulation of the continuous space–time problem

The weak formulation of the continuous space–time problem is
stated using the trial and test function spaces  and  respectively.
3

𝑔 0 𝐫
Members of the trial function space 𝑔 satisfy the non-homogeneous
Dirichlet boundary conditions for the velocity on 𝑃𝐷ext whereas elements
in the test function space 0 satisfy the homogeneous Dirichlet bound-
ry conditions on 𝑃𝐷ext. Additionally, members of both spaces satisfy
he periodic boundary condition 𝐮|𝛺0

= 𝐮|𝛺𝑇 where, 𝛺0 = 𝑄|𝑡=0 and
𝛺𝑇 = 𝑄|𝑡=𝑇 . To enforce the Dirichlet boundary conditions on 𝑃int we
introduce the subspaces 𝑔 ⊂ 𝑔 and 0 ⊂ 0, that additionally
satisfy non-homogeneous and homogeneous boundary conditions on
𝑃int, respectively.

The variational formulation of (7) now reads as:
find 𝑼 = {𝐮, 𝑝} ∈ 𝑔 such that for all 𝑾 = {𝐰, 𝑞} ∈ 0 ∶

𝐵GAL (𝑼 ,𝑾 ) = 𝐿 (𝑾 ) , (13a)

where

𝐵GAL (𝑼 ,𝑾 ) =
(

𝐰, �̂� ⋅ ∇�̂�𝐮
)

𝑄 − (∇ ⋅ 𝐰, 𝑝)𝑄
+ (∇𝐰, 𝜈∇𝐮)𝑄 + (𝑞,∇ ⋅ 𝐮)𝑄 −

(

𝐰, 𝑢−n 𝐮
)

𝑃𝑁ext
,

(13b)

𝐿 (𝑾 ) = (𝐰, 𝐟 )𝑄 . (13c)

he 𝐿2 inner product over 𝐷 is defined as (⋅, ⋅)𝐷.

.4. Weak formulation of the discrete problem

To introduce the numerical discretization, we first subdivide our
hysical domain 𝑄 into elements 𝑄𝐾 . The domain of element interiors
enotes:

̃ =
⋃

𝐾
𝑄𝐾 . (14)

e apply residual-based variational multiscale turbulence modeling
20,41] in which the weighting function space and trial solution space
re decomposed into subspaces that contain the coarse and fine scales:

𝑔 = ℎ
𝑔 ⊕ ′, (15a)

0 = ℎ
0 ⊕ ′, (15b)

here ℎ
𝑔 and ℎ

0 are coarse-scale spaces, and  ′ ⊂ 𝑔 ∪ 0
re the fine scales. The coarse-scale space is spanned by the finite-
imensional numerical discretization whereas the fine-scales are their
nfinite-dimensional complement. Uniqueness of the multi-scale split
15) is ensured when the split is established via a projection operator.
15) implies that the members of 𝑔 and 0 split as:

{𝐮, 𝑝} =
{

𝐮ℎ, 𝑝ℎ
}

+
{

𝐮′, 𝑝′
}

, (16a)

𝐰, 𝑞} =
{

𝐰ℎ, 𝑞ℎ
}

+
{

𝐰′, 𝑞′
}

, (16b)

here the components of the coarse-scale subspaces are denoted as
ℎ =

{

𝐮ℎ, 𝑝ℎ
}

∈ ℎ
𝑔 and 𝑾 ℎ =

{

𝐰ℎ, 𝑞ℎ
}

∈ ℎ
0 , and the components

f the small-scale subspace are denoted as 𝑼 ′ =
{

𝐮′, 𝑝′
}

∈  ′ and
′ =

{

𝐰′, 𝑞′
}

∈  ′.
To arrive at the fully-discrete formulation we make the following

odeling choices. First, we apply a pseudo-transient continuation to
arch in pseudo-time to the space–time steady state solution. Next, we

elect a standard 𝐻1
0 -multiscale projector that eliminates the fine-scale

iscosity contribution. Next, we replace the small-scale space  ′ with
he velocity–pressure product  ′ ×  ′. The fine-scales are modeled as:
′ = −𝜏𝑀𝐫𝑀 , (17a)

𝑝′ = −𝜏𝐶 𝑟𝐶 , (17b)

ith the strong residuals
(

̂ ℎ
) ℎ 2 ℎ
𝑀 = 𝐮 ⋅ ∇�̂� 𝐮 − ∇𝑝 − 𝜈∇ 𝐮 − 𝐟 , (18a)
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𝐆

𝑟𝐶 = ∇ ⋅ 𝐮ℎ, (18b)

nd stability parameters

𝑀 =
(

�̂�ℎ ⋅ �̂��̂�ℎ + 𝐶𝐼𝜈2𝐆 ∶ 𝐆
)−1∕2

, (19a)

𝜏𝐶 = 𝜏−1𝑀 Tr(𝐆)−1. (19b)

n both the momentum residual and its corresponding stability pa-
ameter the time derivative is incorporated in the convection term,
nalogous to (8). As a consequence, the convective and diffusive contri-
utions depend on two different metric tensors, the space–time metric
ensor �̂� and spatial metric tensor 𝐆, respectively. These metric tensors
re given by

̂ =
(

𝜕ξ
𝜕�̂�

)𝑇

𝐆𝑠
𝜕ξ
𝜕�̂�
, 𝐆 =

(

𝜕ξ
𝜕𝐱

)𝑇 𝜕ξ
𝜕𝐱
. (20)

Lastly, we enforce the Dirichlet boundary conditions weakly [21]. To
this purpose we introduce the penalty parameter

𝜏𝑏 =
1
2
𝐶𝐼𝑏 𝜈 (𝐧 ⋅𝐆𝐧)

1
2 . (21)

We now define the fully-discrete time-periodic formulation. The
formulation fits within the well-known space–time framework. In par-
ticular, as a consequence of the continuous spaces, the jump term
across the space–time slabs that is common in the space–time method
is absent. The method reads as:

find 𝑼ℎ =
{

𝐮ℎ, 𝑝ℎ
}

∈ ℎ
𝑔 such that for all 𝑾 =

{

𝐰ℎ, 𝑞ℎ
}

∈ ℎ
0 :

𝐵
(

𝑼ℎ,𝑾 ℎ) = 𝐿
(

𝑾 ℎ) , (22a)

where

𝐵
(

𝑼ℎ,𝑾 ℎ) = 𝐵GAL
(

𝑼ℎ,𝑾 ℎ) + 𝐵PT
(

𝑼ℎ,𝑾 ℎ)

+ 𝐵STAB
(

𝑼ℎ,𝑾 ℎ) + 𝐵WBC
(

𝑼ℎ,𝑾 ℎ) ,
(22b)

𝐵PT
(

𝑼ℎ,𝑾 ℎ) =
(

𝐰ℎ, 𝜕𝜃𝐮ℎ
)

𝑄 + 1
𝑎2

(

𝑞ℎ, 𝜕𝜃𝑝
ℎ)
𝑄 , (22c)

𝐵STAB
(

𝑼ℎ,𝑾 ℎ) = −
(

∇�̂�𝐰ℎ,𝐮′ ⊗ �̂�ℎ
)

�̃� −
(

∇𝐰ℎ,𝐮ℎ ⊗ 𝐮′
)

�̃�

−
(

∇𝐰ℎ,𝐮′ ⊗ 𝐮′
)

�̃� −
(

∇𝑞ℎ,𝐮′
)

�̃� −
(

∇ ⋅ 𝐰ℎ, 𝑝′
)

�̃� ,

(22d)

𝐵WBC
(

𝑼ℎ,𝑾 ℎ) =
(

𝐰ℎ, 𝑝ℎ𝐧 − 𝜈∇𝐮ℎ ⋅ 𝐧
)

𝑃int
+
(

𝜈∇𝐰ℎ ⋅ 𝐧 − 𝑞ℎ𝐧,𝐮ℎ − 𝐠
)

𝑃int

+
(

𝐰ℎ𝜏𝑏,𝐮ℎ − 𝐠
)

𝑃int
.

(22e)

Eq. (22c) represents the pseudo-transient continuation as a global-
ization technique [42,43]. The pseudo-transient continuation technique
is a widely applied methodology that obtains the steady state solution
by adding a derivative to pseudo-time 𝜃. The first term is classical,
whereas the utilization of the second term is non-standard. This term
introduces artificial compressibility [44–46], where 𝑎 is an artificial
speed of sound. This term overcomes some of the difficulties due to
the saddle-point nature of the underlying problem (i.e. the absence
of a pressure term in the continuity equation). Moreover, we note
the introduction of this term permits more powerful preconditioning
options such as algebraic multigrid (AMG). We remark that the numer-
ical solution of the problem is fully incompressible and thus does not
depend on the artificial speed of sound 𝑎.

Eq. (22d) describes terms associated with variational multiscale
stabilization [20]. In LES terminology the first two terms represent the
4

cross-stress, while the third term represents the Reynolds stress. In the
context of stabilized methods, the first term is the Streamline-upwind
Petrov–Galerkin (SUPG) term [47], and the fourth and last terms
are the Pressure-Stabilizing/Petrov–Galerkin (PSPG) [48] and Least-
Squares on Incompressibility Constraint (LSIC) terms respectively. Note
that the first and the second terms are not each other transposes.
Namely, we incorporate the temporal derivative of the fine-scales in
the SUPG term:

(𝐰, 𝜕𝑡𝐮′)�̃� +
(

∇𝐰ℎ,𝐮′ ⊗ 𝐮ℎ
)

�̃� =
(

∇�̂�𝐰ℎ,𝐮′ ⊗ �̂�ℎ
)

�̃� . (23)

This relation is a direct consequence of the partial integration (in the
temporal direction) of the fine-scale time-derivative term:

(𝐰, 𝜕𝑡𝐮′)�̃� = −(𝜕𝑡𝐰,𝐮′)�̃�, (24)

where we note the absence of boundary contributions due to the
periodic boundary conditions.

Lastly, Eq. (22e) enforces the weak boundary conditions on the
interior boundary (7c). The first term is the consistency term. This term
originates from integration by parts and as such guarantees variational
consistency. The second term is the so-called the dual consistency term,
and the last term is the penalty term that ensures the stability of the
formulation. We recall that the Dirichlet boundary conditions in (7d)
on 𝑃𝐷ext are enforced strongly.

3. Conservation properties

In this section we establish the conservation properties of the dis-
crete method. We show conservation of mass, conservation of linear
momentum and provide an approach to conservatively evaluate the
traction. We consider a converged solution where 𝜕𝜃𝐮ℎ = 𝜕𝜃𝑝ℎ = 0.

3.1. Conservation of mass

The global conservation of mass directly follows by selecting the
weighting function 𝑾 ℎ = {𝟎, 1} in the discrete weak formulation (22):

∫𝑄
∇ ⋅ 𝐮ℎ d𝑥 = 0. (25)

We do not attain conservation of mass per time-slab since the weighting
function with pressure component that equals 1 on a single time-slab
and 0 on the others is not a member of ℎ

0 . Remark that it is possible
to work with a particular selection of isogeometric velocity–pressure
spaces that establishes pointwise satisfaction of the incompressibility
constraint [24,49].

3.2. Conservation of linear momentum

In order to study the conservation of linear momentum one might
wish to substitute the weighting function 𝑾 ℎ =

{

𝐰ℎ, 𝑞ℎ
}

=
{

𝐞𝑖, 0
}

with
𝐞𝑖 ∈ R𝑑 the 𝑖th Cartesian unit vector into the discrete weak formulation
(22). This choice is not permitted:

{

𝐞𝑖, 0
}

∉ ℎ
0 . One possible remedy

is to work with unconstrained function spaces and weakly enforce the
non-homogeneous boundary condition via a Lagrange multiplier con-
struct [24,50]. The Lagrange multiplier is also called auxiliary flux [51]
and is used to show global and local conservation. The method yields
conservative boundary fluxes which is a major advantage as compared
to utilizing direct procedures that provide non-conservative boundary
fluxes.

We denote the vector-valued Lagrange multiplier/auxiliary flux as
𝝀. Recall that the discrete weak formulation (22) is defined for the
test function space ℎ

0 in which the velocity test functions vanish on
𝑃𝐷ext. In order to present the augmented formulation, we require the
introduction of other test function spaces. Denote the set of all velocity
basis functions 𝜂 and, furthermore, denote with 𝜂𝑔 the set of velocity
basis functions that do not vanish on 𝑃𝐷ext. With the notation ℎ

0 =
 ℎ

0 × ℎ of the velocity and pressure components of the test function
space, we have  ℎ = span

{

𝑵
}

, where 𝑵 = 𝑵 (𝒙) are the
0 𝐴 𝐴∈𝜂−𝜂𝑔 𝐴 𝐴
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velocity basis functions. Furthermore, we introduce the unrestricted
velocity space  ℎ = span

{

𝑵𝐴
}

𝐴∈𝜂 and unrestricted velocity–pressure
pace ℎ =  ℎ × ℎ. The augmented problem now reads:

find 𝑼ℎ ∈ ℎ
𝑔 such that for all �̄� ℎ =

{

�̄�ℎ, 𝑞ℎ
}

∈ ℎ:

(𝝀ℎ, �̄�ℎ)𝑃𝐷ext
= 𝐵

(

𝑼ℎ, �̄� ℎ
)

− 𝐿
(

�̄� ℎ
)

. (26)

his problem splits as:
find 𝑼ℎ ∈ ℎ

𝑔 and 𝝀ℎ ∈ ℎ −ℎ
0 such that

0 = 𝐵
(

𝑼ℎ,𝑾 ℎ) − 𝐿
(

𝑾 ℎ) for all 𝑾 ℎ ∈ ℎ
0 (27a)

𝝀ℎ, �̄�ℎ)𝑃𝐷ext
= 𝐵

(

𝑼ℎ, �̄� ℎ
)

− 𝐿
(

�̄� ℎ
)

for all �̄� ℎ ∈ ℎ −ℎ
0 .

(27b)

he first subproblem coincides with our original weak formulation and
hus completely determines the numerical solution 𝑼ℎ ∈ ℎ

𝑔 . This
olution may be directly substituted into the second subproblem to
valuate the discrete auxiliary flux 𝝀ℎ ∈ ℎ −ℎ

0 .
We are now in the position to evaluate the linear momentum

onservation and select �̄� ℎ =
{

𝐞𝑖, 0
}

in (26):

∫𝑃𝐷ext

𝜆ℎ𝑖 d𝑠 = ∫𝑃int

𝑝ℎ𝑛𝑖 − 𝜈(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗 d𝑠 − ∫𝑄
𝑓𝑖 d𝑥 (28)

− ∫𝑃𝑁ext

𝑢−n 𝑢
ℎ
𝑖 d𝑠 + ∫𝑃int

𝜏𝑏(𝑢ℎ𝑖 − 𝑔𝑖) d𝑠. (29)

his shows that 𝜆ℎ𝑖 represents the total conserved boundary flux on 𝑃𝐷ext.
emark that the last two members on the right-hand side result from

he usage of weak boundary conditions on 𝑃int and are thus absent
hen instead imposing these conditions strongly.

.3. Conservative traction evaluation

With the aim of evaluating the time-dependent traction on the
nterior boundary 𝛤int we select �̄� ℎ =

{

𝐞𝑖𝑁𝑎, 0
}

in (26) with 𝑁𝑎 =
𝑎(𝑡) an arbitrary basis function in the temporal direction. Note that

his choice is permitted due to the tensor structure of the NURBS
omputational mesh. Substitution provides:

∫𝑃𝐷ext

𝜆ℎ𝑖 𝑁𝑎 d𝑠 + ∫𝑄
𝑓𝑖𝑁𝑎 d𝑥 + ∫𝑃𝑁ext

𝑢−n 𝑢
ℎ
𝑖 𝑁𝑎 d𝑠

= ∫𝑃int

𝑝ℎ𝑛𝑖𝑁𝑎 − 𝜈(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗𝑁𝑎 d𝑠

+ ∫𝑃int

𝜏𝑏(𝑢ℎ𝑖 − 𝑔𝑖)𝑁𝑎 d𝑠. (30)

The right-hand side of (30) contains all the integrals on the interior
oundary 𝑃int. In order to evaluate the (vector-valued) traction force 𝝍
e introduce the discrete problems for 𝑖 = 1, … , 𝑑:

find 𝜓ℎ𝑖 ∈ span
{

𝑁𝑏
}

𝑏∈𝜉 such that

∫𝑃int

𝜓ℎ𝑖 𝑁𝑎 d𝑠 = ∫𝑃int

𝑝ℎ𝑛𝑖𝑁𝑎 − 𝜈(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)𝑛𝑗𝑁𝑎 d𝑠

+ ∫𝑃int

𝜏𝑏(𝑢ℎ𝑖 − 𝑔𝑖)𝑁𝑎 d𝑠 (31)

where 𝜉 is the set of basis function numbers in the time direction.
The traction forces 𝜓ℎ𝑖 thus result from inverting a mass matrix (per
direction).

4. Numerical experiments

In this section, we discuss the computational setup and subsequently
provide results of four numerical experiments using the formulation in
Section 2.4. We evaluate the forces in the space–time domain using the
conservative traction evaluation of Section 3.3. First, we compare the
results of the mesh-constraint boundary velocity of a sinusoidal heaving
5

hydrofoil with the analytical solution and study its dependency on
Fig. 3. Schematic representation of the domain 𝛺, as a time slice of 𝑃 , surrounding
he hydrofoil with the no-slip boundary 𝛤int, the inflow boundary 𝛤𝐷

ext and the outflow
oundary 𝛤𝑁

ext. The arrows indicate the direction of the flow. The six NURBS patches
re indicated with a dotted line.

he temporal discretization. Second, in order to examine the capability
f the proposed methodology of predicting steady flow, we study the
esults of fluid flow past a stationary hydrofoil. We perform a grid
onvergence study and compare our results with the literature. Third,
e focus on the hydrodynamics of a moving body, which is much more

omplex than the case of a steady body. We simulate the flow past a
ow-frequency heaving hydrofoil. Lastly, we investigate the predictive
apability of the methodology on capturing history effects in the wake.
e simulate the flow past a pitching hydrofoil at a moderate frequency.

xperimental data considering (unsteady) forces on a hydrofoil in a low
eynolds-number flow is not available in the literature. We support our
redictions with numerical results from the literature and steady state
imulations using the steady variant of the flow model (22). All results
resented here correspond to simulations using two spatial dimensions.
he third direction refers to time.

.1. Computational setup

We introduce the space–time domain 𝑄 as an extrusion of the spatial
omain 𝛺 enclosing a symmetric four-digit NACA foil section [52].
he spatial domain is discretized as a C-shaped mesh using six NURBS
atches employing second-order NURBS. The spatial domain is illus-
rated in Fig. 3. The discretization is C1-continuous inside the patches

and C0-continuous across patches. The hydrofoil and its motion are
incorporated into the space–time mesh using curve interpolation.

Fig. 4 provides an overview and a close-up of a temporal slice of
the mesh. The mesh is constructed with the aim of achieving high
quality near the hydrofoil. Based on simulations of the flow past a
cylinder [53], we choose the distance between 𝛤int and 𝛤ext to be 8
chord lengths in order to preclude influence from the outflow boundary
𝛤ext. We have numerically verified that influence of 𝛤ext is virtually
absent. We select the chord 𝑐 and free stream velocity 𝑈 as 𝑐 = 𝑈 = 1.
The numerical experiments are conducted in DelFI, which is based on
the MFEM library [54].

The time-marching in pseudo-time 𝜃 towards a steady solution
typically consists of 14 pseudo-time steps of 5 seconds using the back-
ward Euler method as a pseudo-time marching scheme. As a stopping
criterion, we terminate the computation when the 𝐿2-norm of the
residual of the momentum and mass equations is smaller than 10−6

at the start of the first Newton iteration. Per time step we use 5
Newton iterations. We choose the artificial speed of sound 𝑎 as 4, which
exceeds the velocities encountered in the simulations. This provides
a significant reduction in simulation time. Furthermore, we select the
inverse estimate coefficients as 𝐶𝐼 = 36 and 𝐶𝐼𝑏 = 8. We note that the
latter is only suitable for polynomial degrees up to 2.

Lastly, we discuss the computation of the boundary velocity on the
interior boundary 𝐠int . We recall the split:
𝐠int = 𝐠𝑛 + 𝐠𝑡, (32a)
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Fig. 4. The spatial mesh as a slice in time: (a) The full C-shaped spatial mesh; (b) A close-up of the spatial mesh near the interpolated hydrofoil.
Fig. 5. The motion ℎ in (a) and velocity 𝑔𝑥2 in (b) of the hydrofoil in 𝑥2-direction for 3 resolutions 𝑛el,𝑥3 in time direction and the analytical solution for a heave motion with 𝑇
= 8 s.
𝐠𝑛 = (𝐠int ⋅ 𝐧)𝐧 = 𝑣𝑛𝐧, (32b)

𝐠𝑡 ⋅ 𝐧 = 0, (32c)

where 𝑣𝑛 satisfies the relation (12). The domain motion fully prescribes
𝐠𝑛, while the tangential component 𝐠𝑡 is still undetermined. To nu-
merically determine 𝐠int however, we use the motion encoded in the
mesh and do not rely on the relation (12). The following procedure is
permitted due to the extrusion structure of the space–time mesh. We
have the following relations:

𝑡 = 𝑡(𝜉𝑑+1), (33a)

𝐗 = 𝐗(𝜉1,… 𝜉𝑑 ), (33b)

where 𝐗 is a Lagrangian coordinate labeling a particle, and where 𝝃
are the coordinates in the reference domain. We compute the boundary
velocity by taking the derivative of the spatial coordinate 𝐱 to the time
6

direction 𝑡 = 𝑥𝑑+1 on a particle path:

𝐠int =
𝜕𝐱
𝜕𝑡

|

|

|

|𝐗
in 𝑃int. (34)

Realizing the dependence 𝐱 = 𝐱(𝜉1,… 𝜉𝑑+1), we can use the chain rule
to conclude:

𝐠int = 𝑠 𝜕𝐱
𝜕𝑥𝑑+1

|

|

|

|

|𝐗
= 𝑠

𝑑+1
∑

𝑖=1

𝜕𝐱
𝜕𝜉𝑖

𝜕𝜉𝑖
𝜕𝑥𝑑+1

|

|

|

|

|𝐗
= 𝑠 𝜕𝐱

𝜕𝜉𝑑+1

𝜕𝜉𝑑+1
𝜕𝑥𝑑+1

in 𝑃int. (35)

We note that the velocity 𝐠int computed via (35) satisfies 𝐠int ⋅ 𝐧 = 𝑣𝑛,
where 𝑣𝑛 is given by (12).

4.2. Mesh-constraint boundary velocity

We evaluate the mesh motion and the resulting mesh-constraint
boundary 𝐠int velocity. We apply a heave motion to the hydrofoil
such that it only moves in the 𝑥2-direction. The heave motion of the
hydrofoil is sinusoidal with ℎ(𝑡) = ℎ sin(2𝜋𝑡∕𝑇 ), with the amplitude
𝑎
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Fig. 6. Results of steady state (SS) simulations for the drag coefficient 𝐶𝑑 in (a) and lift coefficient 𝐶𝑙 in (b) using four meshes and a Richardson extrapolation of the limit ℎ∕ℎ0 ←→ 0
based on the three fines meshes. The order of convergence is 1.57 and 1.34 for drag and lift respectively.
i
w

ℎ𝑎 = 0.5 m and the period 𝑇 = 8 s. We use three different temporal
resolutions consisting of 6, 12 and 24 elements in the temporal direction
𝑛el,𝑥3 .

Fig. 5(a) presents the resulting mesh motion with the corresponding
analytical solution. The second-order NURBS are reconstructed using
the control points from the mesh. We observe that the finest mesh with
𝑛el,𝑥3 = 24 is virtually indistinguishable from the analytical solution.
Next, we visualize the resulting vertical boundary velocity 𝑔𝑥2 and the
corresponding analytical solution in Fig. 5(b). The velocities are linear
within the element due to the C1 mesh continuity. Again, the results
on the finest mesh with 𝑛el,𝑥3 = 24 are virtually indistinguishable from
the analytical solution.

4.3. Stationary hydrofoil

We simulate the flow past a stationary hydrofoil for angles of attack
𝛼 ranging from 1◦ to 5◦. The simulations are performed on a NACA0012
foil section with Reynolds number Re = 𝑈𝑐∕𝜈 = 1000 where 𝜈 is the
kinematic viscosity. We study the resulting drag coefficient 𝐶𝑑 and lift
coefficient 𝐶𝑙 defined as:

𝐶𝑑 =
2𝐹𝑑
𝜌𝑐𝑈2

, (36a)

𝐶𝑙 =
2𝐹𝑙
𝜌𝑐𝑈2

, (36b)

here 𝐹𝑑 is the force component in the flow direction, 𝐹𝑙 the force
omponent perpendicular to the flow direction, and 𝜌 denotes the
ensity.

We first consider the steady state setup. Fig. 6 shows the results
f the spatial grid convergence study for 𝐶𝑑 and 𝐶𝑙 using 4 different

meshes of varying resolution. In the coarsest mesh the domain is
discretized using 30 elements over the length of the hydrofoil, 15 ele-
ments between the hydrofoil and the inflow boundary, and 45 elements
between the hydrofoil and the outflow boundary. We use a Richardson
extrapolation to examine the limit ℎ∕ℎ0 → 0 using the three finest
meshes only, as the coarsest mesh is not in the asymptotic range.
We find 1.57 and 1.34 for the order of convergence of the drag and
lift, respectively. We choose the mesh with two refinements for our
computations as this gives a balance between results and computational
efforts. For this mesh the error is 0.13% and 0.08% for 𝐶𝑑 and 𝐶𝑙
respectively considering the extrapolated result for ℎ∕ℎ → 0.
7

0 r
Fig. 7. Lift coefficient 𝐶𝑙 at Re = 1000 of a stationary NACA0012 hydrofoil for several
angles of attack 𝛼 determined using the proposed method and a steady state (SS)
solution supplemented with results from the literature.

Next, we focus on the lift coefficient. Fig. 7 shows 𝐶𝑙 determined
n stationary space–time and steady state simulations, supplemented
ith results from the literature. The computations are performed for 5

different angles of attack. The similarity of the results of the space–time
and steady state simulations demonstrates that the spatial convergence
of steady state simulations is indeed sufficient for space–time simula-
tions. Moreover, the results are in good agreement with the results from
the literature. We compare with (i) a Boundary Element Method (BEM)
with viscous correction XFoil [55], (ii) the Reynolds Averaged Navier
Stokes (RANS) solver Ansys Fluent [56], (iii) an Arbitrary-Lagrangian–
Eulerian Characteristic Based Split Scheme (ALE-CBS) solver [57], and
(iv) other Ansys Fluent computations [58]. The last computations are
only available for the angles of attack of 2◦ and 4◦. The numerical
esults obtained with this solver deviate more from the results that we
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Fig. 8. The convergence and results of the case of a slowly sinusoidal heaving NACA0012 hydrofoil with 𝑘 = 0.01 and Re = 1000: (a) 𝐿2-norm of the residuals at the start of
he first Newton iteration of space–time momentum and mass conservation over pseudo-time 𝜃; (b) Force coefficients 𝐶𝑓 = 𝐶𝑑 , 𝐶𝑙 in space–time (ST) compared to semi-discrete
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have obtained. Lastly, we note that we have verified the force signal of
the space–time simulations to be constant in time. This demonstrates
that our method correctly predicts steady flow.

4.4. Heaving hydrofoil at a low reduced frequency

In this test case, we simulate a slowly heaving hydrofoil. The
hydrofoil is oscillating at a low reduced frequency 𝑘 = 𝜋𝑐∕(𝑇𝑈 ). We
note that the effect of the unsteady wake on the flow past the hydrofoil
is very low [59] and added mass effects are negligible. As a conse-
quence, the forces on the hydrofoil should match these from quasi-static
simulations. We obtain the quasi-static results using stationary steady
state simulations where we compensate the angle of attack 𝛼 for inflow
ue to the heave motion. This provides the effective angle of attack:

eff = 𝛼 − arctan

(

2𝜋ℎ𝑎 cos
(

2𝜋𝑇 −1𝑡
)

𝑇𝑈

)

. (37)

The simulations are performed with Re = 1000, 𝑘 = 0.01, ℎ𝑎 = 0.1 m
and 𝛼 = 0◦. We use the same spatial discretization as for the stationary
cases. In the temporal direction we use 𝑛el,𝑥3 = 24. We note that further
efinement does not improve the numerical results.

We visualize the convergence of the residuals in Fig. 8(a). We have
erified that using stricter convergence criteria does not improve the
olution quality. In Fig. 8(b) we show 𝐶𝑙 and 𝐶𝑑 for the space–time
nd steady state simulations. We observe that both 𝐶𝑙 and 𝐶𝑑 agree

with the quasi-static results.

4.5. Hydrofoil with large angle pitch motion

In this last, test case we focus on the prediction of the history effects
in the wake. We simulate the flow past a sinusoidal pitching NACA0015
hydrofoil. The hydrofoil pitches around the 1∕3 chord with motion 𝛼(𝑡) =
𝑎sin(2𝜋𝑡∕𝑇 ), where the amplitude is 𝛼𝑎 = 23◦, the Reynolds number is
e = 1100 and frequency is 𝑘 = 0.377.

The same case is studied by [3] using Ansys Fluent. Their simulation
etup uses an impulsive start and at least 20 large time steps to move
8

he wake downstream of the hydrofoil. Their simulation is pursued r
ith more than 2000 time steps per period. Its result is considered
eriodic if the maximum variation in mean statistics between the last
ycles is 0.1%. In our setup we use the same spatial discretization
s in our previous space–time simulations. To accurately capture the
low characteristics, we apply two extra refinements in the temporal
irection. We note that further refinement does not yield improved
olution quality.

In Fig. 9 we show a time signal of the lift coefficient 𝐶𝑙. In general
e observe good agreement between our result and the result of [3].
e see small differences in the regions 0.10 < 𝑡∕𝑇 < 0.43 and 0.58 <

∕𝑇 < 0.84. One important difference between our setup and the
imulation in [3] is that our solution is exactly periodic which is not
he case in the reference computation. In Fig. 10 we show the velocity
nd pressure fields for 8 moments in time. Note the periodic solution
ehavior. This is most apparent in the flow behind the hydrofoil when
omparing the velocity field at 𝑡∕𝑇 = 7∕8 and 𝑡∕𝑇 = 0. Furthermore,
ote that the flow is symmetric around the 𝑥-axis. To see this, compare
or instance the velocity field at 𝑡∕𝑇 = 0 with 𝑡∕𝑇 = 4∕8 and 𝑡∕𝑇 = 2∕8
ith 𝑡∕𝑇 = 6∕8. Both figures illustrate that the effect of the history in

he wake is correctly predicted.

. Conclusions

In this work we present a time-periodic continuous space–time
omputational setup to simulate flow past periodically moving ob-
ects. This ensures that the flow is exactly periodic, and precludes
orking with needlessly long time domains. We enforce the time-
eriodicity constraint as a boundary condition in time. This changes
he time-dependent two-dimensional problem into a three-dimensional
oundary value problem in both space and time. The method employs
sogeometric analysis to achieve higher-order smoothness in space and
ime. We discretize the formulation using residual-based variational
urbulence modeling in which turbulent eddy viscosities are absent.
urthermore, we use weak boundary conditions to enhance the accu-
acy near the moving boundaries of the computational domain and
seudo-transient continuation to overcome some of the difficulties
elated to the saddle-point nature of the underlying problem. We show
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Fig. 9. Lift coefficient 𝐶𝑙 over time of a pitching NACA0015 hydrofoil with 𝛼𝑎 = 23◦, l and Re = 1100.
Fig. 10. Velocity and pressure plots of a pitching hydrofoil with an angle of 23◦ and a period 𝑇 = 8.33 s for 8 moments in time. Re = 1100.
the conservation properties of the formulation and use a conservative
traction evaluation. Numerical experiments on flow past stationary and
moving hydrofoils demonstrate very good accuracy, even on coarse
meshes. The computed drag and lift coefficients match with results
from the literature and history effects in the wake are accurately
captured.

We outline two possible further research directions. First, the com-
putational setup should be extended to three spatial dimensions (i.e. the
corresponding boundary value problem is four-dimensional). Second,
exploring the benefits of the computational setup in the reduced order
modeling context could yield various advantages. The transformation
of the time-dependent problem into a boundary value problem might
9

allow for faster and more accurate evaluation of reduced order models
for periodic flows.
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