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The modelling of liver tissue across multiple length
scales constitutes a significant challenge, primarily
due to the multiphysics coupling of mechanical
response and perfusion within the complex multiscale
vascularization of the organ. In this paper, we present
a modelling framework that connects continuum
poroelasticity and discrete vascular tree structures
to model liver tissue across disparate levels of
the perfusion hierarchy. The connection is achieved
through a series of modelling decisions, which include
source terms in the pressure equation to model
inflow from the supplying tree, pressure boundary
conditions to model outflow into the draining tree,
and contact conditions to model surrounding tissue.
We investigate the numerical behaviour of our
framework and apply it to a patient-specific full-scale
liver problem that demonstrates its potential to help
assess surgical liver resection procedures.

1. Introduction
The liver is a highly vascularized organ serving several
physiological functions, such as metabolism of nutrients
and drugs, detoxification, bile production and hormone
regulation [1]. A liver resection, or hepatectomy, is a
common surgical procedure to remove part of the liver,
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mostly due to a (pre-)cancerous or benign tumour. The liver’s complex vasculature makes it
challenging to predict the impact of a surgical resection accurately. Computational models can
help predict the impact on blood perfusion and determine the amount of liver tissue that can be
removed safely while functionality is maintained.

Patient-specific modelling of surgical liver resection requires the adequate modelling of the
liver’s hierarchical vasculature. Blood is supplied to the liver through the hepatic artery, that
comes from the heart and the portal vein. These two vessels branch into vessels of smaller
diameter, forming vascular trees, which supply the liver parenchyma with blood. After passing
the liver microcirculation, blood is recollected via smaller and then larger vessels of the hepatic
vein and goes back to the heart [1]. Identifying multiscale vascular trees in vivo through imaging
is impossible due to limited resolution. They must therefore be generated synthetically with the
help of a computer. The best-known generation method is constrained constructive optimization
(CCO) [2,3]. Its core is a local optimization approach, directly based on Murray’s minimization
principles [4]. We recently extended the CCO approach such that a tree can be found that is
optimal both in (global) geometry and topology [5]. Optimizing the geometry is cast into a
nonlinear optimization problem, which allows the investigation of various possible goal functions
and constraints [6]. The resulting synthetic trees showed good agreement with real trees of
a human liver characterized experimentally from corrosion casts. We recently extended our
technology to the simultaneous generation of multiple supplying and draining trees [7].

Blood perfusion is closely linked to tissue deformation, and including tissue deformation
enhances the predictive capability of the liver tissue model. Unfortunately, synthetic vascular
trees, which are largely based on optimization principles, do not offer a direct link to be
coupled with tissue mechanics and deformation. One solution is to resort to homogenization
and the theory of poromechanics, replacing the complex heterogeneous medium by a fictitious
homogeneous medium with equivalent macroscale behaviour.

Many existing studies based on poromechanics considered either perfusion models [8–13]
or tissue deformation [14]. In [8], a perfusion system is proposed that is decomposed into
compartment models, each valid at a different scale, to describe blood flow in the human liver.
In [15], an approach to model perfusion in a patient-specific human liver is based on a diffuse
interface method that couples porous-medium-type flows. To date, there are only a few studies
that consider liver perfusion coupled to tissue deformation. In [14], a porohyperviscoelastic model
is used to predict shear waves in pressurized soft liver tissues. In [16], a multiphasic model
was developed to describe transport phenomena and perfusion metabolism in the liver, where
idealized two-dimensional liver structures, representing liver lobules, are considered.

In this paper, we show that the two modelling approaches, i.e. discrete synthetic vascular
trees and continuum poroelasticity, can be synergistically combined to better visualize changes in
perfusion on the organ scale, e.g. due to resection. We demonstrate that the resulting framework
has the potential to support the assessment of surgical resection procedures by simulating the
impact on the liver’s perfusion characteristics. Our paper is organized as follows. In §2, we
provide the poroelastic model in terms of a two-phase pressure-displacement formulation with
incompressible constituents. Section 3 reviews our method for synthetically generating vascular
trees based on mathematical optimization. In §4, we connect our continuum poroelastic and
discrete vascular tree models via suitable interface assumptions on geometry and boundary
conditions. Additionally, we derive the weak formulation of the poroelastic model. In §5, we first
discuss the characteristic behaviour of the poroelastic model via a two-dimensional test problem,
and then apply it to simulate a three-dimensional model of a liver resection. Section 6 closes with
a discussion and an outlook.

2. Continuum poroelastic model
In this section, we briefly review poroelasticity at large strains and provide the balance laws and
the constitutive laws of the poroelastic model that we will use in the following.
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(a) Preliminaries and kinematics
Classical poromechanics is rooted in continuum mixture theory [17]. Continuum mixture theory
is a general mathematical theory that provides a framework for deriving (simplified) continuum
mechanics models for a large number of multi-physics problems. For an extensive review on
poromechanics, we refer to [18–20], and note a number of important theoretical and numerical
studies in the field of poromechanics [21–27].

The core principle in poromechanics is that the porous material is composed of multiple
constituent bodies that simultaneously occupy a common region in space. In this work, we rely
on the common assumption that the Lagrangian configurations of the constituent bodies coincide.
This means that we work with a single Lagrangian description. Hence, the spatial position
(motion) of a particle is given by the (invertible) deformation map

x = χ (X, t), (2.1)

where X ∈ Ω0 denotes the Lagrangian position, x ∈ Ω the spatial position, and t the time.
Here Ω0 and Ω are the reference and current domain of the mixture, respectively. We use the
standard notation for the displacement of the mixture, i.e. u = x − X. Furthermore, we denote
the Lagrangian velocity as v = u̇, where the dot represents the material derivative. We introduce
the following kinematic quantities:

F = I + ∇u, (2.2a)

J = det F, (2.2b)

C = FTF (2.2c)

and E = 1
2

(FTF − I), (2.2d)

where F is the deformation gradient, J its determinant, C the right Cauchy–Green tensor and E
the Green-Lagrange strain tensor.

In this work, we consider a heterogeneous mixture composed of a single fluid and a single
solid constituent, where superscripts f and s refer to quantities associated with the fluid and
the skeleton phase, respectively. We denote the volume fraction of the fluid and solid (skeleton)
constituent respectively as φf and φs. Since the skeleton is a deformable macroscopic structure,
its deformation changes the structure of its pores. As a consequence, the volume fractions are
time-dependent (and obviously space-dependent), i.e. φf = φf (x, t) and φs = φs(x, t). We assume
that void spaces are absent, i.e.

φf (x, t) + φs(x, t) = 1, (2.3)

for all x ∈ Ω and t ≥ 0. As a consequence, the composition can be described by the porosity φ =
φ(x, t)

φf = φ (2.4a)

and

φs = 1 − φ. (2.4b)

At the macroscopic level, the solid-fluid mixture is typically considered a homogenized medium.
We visualize our model in figure 1.

The partial mass densities of the fluid and solid constituents denote ρ̃f = ρ̃f (x, t) and
ρ̃s = ρ̃s(x, t), respectively. These densities represent the mass of the associated constituent per
infinitesimal mixture volume. The partial mass densities may be decomposed as

ρ̃f = ρf φ (2.5a)

and

ρ̃s = ρs(1 − φ). (2.5b)
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poroelastic medium
fluid with volume
fraction φ

homogenization

skeleton with
volume fraction (1 – φ)

homogenized medium
with porosity φ

Figure 1. Continuum (homogenized) poroelastic mixture consisting of a skeleton and fluid constituent.

In this paper, we assume that both constituents are incompressible, i.e.

ρ f = const (2.6a)

and
ρs = const. (2.6b)

The assumption of incompressible constituents is common in biomechanics, since the fluid
pressure and solid stresses are typically negligible in comparison to the bulk modulus of the
material [24].

(b) Balance laws and constitutive equations
In agreement with the continuum theory of mixtures, each constituent may be considered in
isolation and its motion involves terms that model the interaction with the other constituents.
The motion of the mixture is then a consequence of the individual evolution equations. In the
scope of this work, we focus directly on the evolution equations relevant for the final poroelastic
model, assuming quasi-static conditions.

The balance of fluid mass takes the form

∂t(ρf φ) + ∇ · (ρf φvf ) = ρf θ , (2.7)

where vf denotes the velocity of the fluid and θ describes a mass source term (θ ≥ 0) or a sink term
otherwise [25]. Next, we introduce the added mass quantity m and the perfusion velocity w as

m = ρ̃f J − ρ̃
f
0, (2.8a)

ρ̃
f
0 = ρf φ0 (2.8b)

and w = φ(vf − v), (2.8c)

where φ0 = φ0(X) = φ(χ−1(X, 0), 0) represents the porosity in the reference configuration. The
added mass m represents the variation in fluid mass content per unit volume of the undeformed
skeleton. A straightforward calculation reveals that the evolution of the added mass is given by

1
J

ṁ + ∇ · (ρf w) = ρf θ . (2.9)

We relate the perfusion velocity w to the fluid pressure p in the pores using Darcy’s Law

w = −k
η

∇p, (2.10)

where the quantity k describes the symmetric second-order permeability tensor of the mixture
and η is the dynamic viscosity. We restrict ourselves to the isotropic case, i.e k = kI with k = const
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and rewrite K = k/η. We note that Darcy’s Law as constitutive relation is a standard choice in the
literature. Considering the steady-state case and substitution of (2.10) into (2.9) provides

− K∇2p = θ in Ω (2.11a)

and
− K(F−T∇0)F−T∇0p = θ in Ω0, (2.11b)

where we have used the pull-back operation ∇ = F−T∇0 for the mapping of (2.11a) to the reference
configuration Ω0 with ∇0 denoting the material gradient. The balance of momentum in the actual
and reference configuration may then be written as

∇ · σ = 0 in Ω (2.12a)

and
∇0 · (FS) = 0 in Ω0, (2.12b)

where we have assumed the absence of body forces. Here, σ = J−1FSFT is the Cauchy stress tensor
for the complete medium and S represents the second Piola-Kirchhoff stress tensor. To consider
the role of the interstitial fluid, we introduce the effective stress, also referred to as Terzaghi
decomposition

σ = σ ′ − pI, (2.13)

where σ ′ denotes the effective stress. The deformation of the skeleton is now determined by the
effective stress σ ′. We choose the following constitutive relations:

S = ∂Ψ s(E, Js)
∂E

− pJC−1 (2.14a)

and

p = −∂Ψ s(E, Js)
∂Js , (2.14b)

where Ψ s = Ψ s(E, Js) is the Helmholtz free energy density and Js = J(1 − φ) the Jacobian weighted
by the volume fraction of the skeleton phase [26]. The introduced constitutive equations arise
from thermodynamic principles on a macroscopic scale. For a review on poroelasticity from the
microscopic perspective and the derivation of constitutive relations by means of a micro-macro
approach, we refer to [27].

To close the system of equations, the Helmholtz free energy needs to be selected. We choose to
work with a free energy that decomposes as

Ψ s(E, Js) = Ψ skel(E) + Ψ vol(Js), (2.15)

where Ψ skel(E) is the hyperelastic potential of the skeleton and Ψ vol(E) accounts for macroscopic
volume change due to interstitial fluid pressure. In this work, we employ a hyperelastic material
model of Neo-Hookean type for the skeleton which can be expressed in terms of the first and
third invariant of the right Cauchy–Green tensor

Ψ skel = 1
8
λln2(I3) + 1

2
μ[I1 − 3 − ln(I3)], (2.16)

with the invariants I1 = tr C and I3 = det C. The coefficients λ and μ describe the Lamé parameters.
For the volumetric contribution of the free energy function, we choose

Ψ vol = κ

(
Js

1 − φ0
− 1 − ln

(
Js

1 − φ0

))
, (2.17)

with κ = E/(3(1 − 2ν)) denoting the bulk modulus of the skeleton [26]. With that choice, the
constitutive equations can be rewritten as

S = 2
∂Ψ skel

∂C
− pJC−1 (2.18)
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and

p = −∂Ψ vol

∂Js . (2.19)

Equation (2.19) relates Js to p, and thus the porosity φ to the fluid pressure p. Inserting (2.17) into
(2.19), we obtain

p = κ

(
− 1

1 − φ0
+ 1

Js

)
. (2.20)

In summary, the poroelastic model is given by the following system of equations in the reference
configuration Ω0:

∇0 · (FS) = 0 in Ω0, (2.21a)

− K(F−T∇0)F−T∇0p = θ in Ω0, (2.21b)

S = 2
∂Ψ skel

∂C
− pJC−1 (2.21c)

and p = −∂Ψ vol

∂Js , (2.21d)

where the displacement u and the fluid pressure p are the two primary variables. The system
needs to be complemented with suitable boundary conditions. We will specify these in §4.

3. Discrete vascular tree model
We now briefly describe the model assumptions and generation of vascular trees based on a set
of physiological constraints, where we closely follow our work on synthetic vascular trees [5,7].

(a) Mathematical formulation
We describe each vascular tree as a directed graph T = (V, A) with nodes u ∈ V and segments
a ∈ A. Each segment a = uv approximates a vessel as a rigid and straight cylindrical tube defined
by the geometric locations of nodes xu and xv , length �a = ||xu − xv ||, volumetric flow Qa and
radius ra. The proximal node of the single root segment is the root x0, and the distal nodes of each
terminal segment are the leaves v ∈ L. We approximate blood as an incompressible, homogeneous
Newtonian fluid and assume laminar flow through each vessel of the tree. The hydrodynamic
resistance Ra of each segment a can be described by Poiseuille’s Law:

Ra = 8η

π

�a

r4
a

∀a ∈ A, (3.1)

where η is the dynamic viscosity of blood, set to 3.6 cP. Non-Newtonian effects such as the
Fåhræus–Lindqvist effect are only significant for vessels under 0.2 mm [6]. The smallest vessels
of our generated liver trees are 0.67 mm, which justifies the constant blood viscosity assumption.
The pressure drop across a segment follows then with

�pa = RaQa ∀a ∈ A. (3.2)

At branching nodes, the relationship between parent and child segments obeys Murray’s Law [4],
defined by

r3
uv =

∑
vw∈A

r3
vw ∀v ∈ V \ L. (3.3)

Each tree is perfused at steady state by a given perfusion flow Qperf. We assume a homogeneous
flow distribution to all N leaves with a terminal flow Qterm = Qperf/N and use Kirchhoff’s Law to
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compute the flow values of the branching nodes with

Quv =
∑

vw∈A

Qvw ∀v ∈ V \ (0 ∪ L). (3.4)

The trees are generated to obey scaling relations based on minimizing the total power, which
consists of the power to maintain blood inside the vessels Pvol and the (viscous) power to move
blood through vessels Pvis. The total cost of a vascular tree thus is defined with

fT = Pvol + Pvis =
∑
a∈A

mbπ�ar2
a + 8η

π

�a

r4
a

Q2
a , (3.5)

where mb is the metabolic demand factor of blood, which we set to 0.6 µW mm−3.

(b) Algorithmic solution approach
Our aim is to generate a set of one supplying and one draining tree inside the liver, which
obey these goals and constraints and are optimal both in topology and geometry. As the hepatic
artery and portal vein are mostly aligned, they are usually combined in one single tree for model
simplicity [7]. Therefore, the generated synthetic supplying tree contains the hepatic artery and
portal vein and the synthetic draining tree contains the hepatic vein.

Using the framework described in [5] for each tree, we start by generating N terminal nodes
x̄ inside the perfusion volume and connect them to the manually set root position. From this
initial (fan) shape, new topologies are explored by swapping segments. A swap detaches a node
from its parent and connects it with another existing segment. Afterwards, the global geometry
(the positions of all branching nodes) is optimized by solving a nonlinear optimization problem
(NLP). The newly created topology is accepted based on a simulated annealing approach, and
new swaps are created until the topologies of both trees converge against a local minimum. If
the resulting swap creates an intersection between the supplying and draining tree, we always
reject it.

For the global geometry optimization, we include the nodal positions x, the length � and
the radii r of all segments inside the vector of optimization variables y = (x, �, r). We introduce
physical lower bounds �−, r− and numerical upper bounds �+, r+. The best geometry is then
found in

Y = R
3|V| × [�−, �+]A × [r−, r+]A, (3.6)

and our NLP reads

min
y∈Y

∑
a∈A

mbπ�ar2
a + 8η/πQ2

a�a/r4
a , (3.7)

s.t. 0 = xu − x̄u, u ∈ V0 ∪ L, (3.8)

0 = �2
uv − ||xu − xv ||2, uv ∈ A (3.9)

and 0 = r3
uv −

∑
vw∈A

r3
vw, v ∈ V \ (0 ∪ L). (3.10)

(3.8) fixes the position of terminal nodes, (3.9) ensures consistency between nodal positions and
segment length and (3.10) enforces Murray’s Law. After the trees are successfully generated, all
nodal positions x are fixed. At each segment a, we can now directly retrieve the length �a, the
radius ra and the volumetric flow Qa. Furthermore, the mean velocity v̄a through each segment a
can be easily computed with

v̄a = Qa

πr2
a

. (3.11)
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Figure 2. Modelling the resistance of surrounding tissues. The spring stiffnessβ is a function of the displacementsu.

4. A phenomenological modelling framework for tissue perfusion
In this section, we describe the coupling of the vessel trees to the poroelastic model derived
in the previous section. First, we describe the interaction of the poroelastic domain with
surrounding tissues by nonlinear displacement boundary conditions. We then introduce
modelling assumptions in terms of source terms for the inlets and boundary conditions for the
outlets to enable the perfusion of the poroelastic domain. We close this section by deriving the
weak form of the coupled problem for the purpose of finite-element discretizations.

(a) Modelling the interaction with surrounding tissues
To arrive at a closed boundary value problem, we need to complement the system (2.21) by
appropriate boundary conditions. In our application case, we would like to take into account the
interaction of the liver with surrounding organs, with which the liver is continuously in contact.
Motivated by a penalty approach known from contact mechanics, we model the resistance of the
surrounding organs by adding the following contribution:

Wc(u) = βu, (4.1)

supported on Γouter to the left-hand side the balance of momentum. This term can be interpreted
to mimic the effect of nonlinear springs at the outer boundary as illustrated in figure 2, where β

corresponds to the spring stiffness. In hyperelastic tissue-like materials, the stiffness changes with
the deformation. We therefore model β as a function of the displacements u

β(u) = 2α

1 + e−cu − α, (4.2)

in which α corresponds to the maximum value of the spring stiffness and c is the steepness of
the curve. We choose c = 15 for all computations. Analogous to nonlinear springs, the stiffness
saturates towards a constant value with increasing displacement.

(b) Augmenting the poroelastic model with discrete tree feature
The poroelastic domain, representing the tissue, is supplied with fluid from the vessels of a
supplying tree and returns fluid through the vessels of a draining tree (figure 3). Therefore,
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draining tree

supplying tree

outer boundary Gouter

circular outflow
boundary Goutflow

inflow vessel

poroelastic
domain

Figure 3. Coupling of the vascular treeswith the porousmedium. The red tree represents the vessels of the supplying treewhile
the blue ones are the vessels of the draining tree. Circular voids represent the interface area between the continuummodel and
the discrete draining tree.

the poroelastic domain can be interpreted as a connector between the supplying and draining
trees. We now address the question how to connect the poroelastic model to the vessel trees by
specifying appropriate boundary conditions to induce flow from the inlets to the outlets.

To bridge the gap between the macroscopic (homogenized) medium and the discretely
resolved levels of the vascular tree, we assume circular areas (or spherical areas in three
dimensions), whose radii are of the same order as the radii of the vessels at the terminal
vessel points (figure 3). We cannot model the physiological mechanisms in these areas directly,
and therefore depict them as void. In the following, we describe corresponding modelling
assumptions in terms of source terms for the inlets and boundary conditions for the outlets.

(i) Bell-shaped source terms to model flow from the supplying tree

We induce flow from the discrete supplying tree into the poroelastic domain through the source
quantity θ in the mass conservation equation (2.21b) by a summation over all n terminal vessels
of the supplying tree

θ =
n∑

i=1

θi, (4.3)

where θi refers to the source term of the i-th terminal vessel of the supplying tree. We transfer the
volumetric flow from each terminal vessel i of the supplying tree into the source term in the mass
conservation equation (2.21b) in the form of a bell-shaped distribution

θi(x) = γi exp

(
−‖(x − xi)‖2

2
(bri)2

)
, (4.4)

where γi is the amplitude of the ith function, ‖·‖2 is the Euclidean norm, xi is the position vector
of the ith inlet terminal point, ri is the radius of the corresponding ith inlet terminal vessel and b is
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a scaling factor of the radius. The radii ri, the locations xi and the volumetric flow Qi = ∫
θi dx

are extracted from the supplying vascular tree data described in §3. The assumption of an
incompressible, steady-state setting implies that the inflow must match the outflow. Furthermore,
drainage occurs exclusively through the terminal outlet vessels, and we have set an impermeable
boundary condition along the outer boundary. Under these circumstances, we require that the
total flow that enters the domain,

∑
i Qi, matches to the total flow that leaves the draining tree.

The bell-shaped function possesses several advantages that justifies this choice. The
symmetric, smooth and continuous nature of the bell-shaped function distributes the inflow,
modelling the effect of the interface area that is not represented in the discrete and continuum
models. It allows for a simple and effective control of the overall shape and magnitude of
the inflow profile. The bell-shaped function also has a well-defined peak that represents the
highest flow rate. Moreover, the bell-shaped function can be employed to simulate the spread
of the fluid as it enters the domain. By adjusting the amplitude of the bell-shaped function, the
magnitude of the inflow can be controlled. The bell-shaped function has a simple mathematical
form and an analytical solution that allows for efficient and accurate computation in numerical
simulations. In particular, the amplitude γi is determined from the known ith volumetric flow Qi
via γi = Qi/(πb2r2

i ) (two dimensions) and γi = Qi/((πb2r2
i )3/2) (three dimensions).

(ii) Boundary conditions to model flow into the draining tree

We induce flow from the poroelastic domain into the discrete draining tree by imposing Dirichlet
boundary conditions for the pressure at the circular boundaries of these void areas (denoted by
Γoutflow). The radii and locations of the terminal outlet points are extracted from the draining
vascular tree data described in §3. It is convenient to set a reference pressure level of p = 0 here.
To guarantee the conservation of mass, we model the outer boundary (denoted by Γouter) of the
domain as impermeable by inducing the Neumann boundary condition

∇p · n = 0, (4.5)

which guarantees that no fluid is leaving the poroelastic domain through its outer boundary.

(c) Weak formulation and discretization
We use the standard finite-element method [28] for the discretization of the poroelastic model
in the Lagrangian description (2.21) augmented with the interaction term presented in §4a.
Multiplication of the momentum equation (2.21a) with discrete test function vh and the pressure
equation (2.21b) with discrete test function qh, subsequently integrating over the reference domain
Ω0, and applying integration by parts leads to the weak statement: find u ∈ Vh and p ∈Wh,0 such
that for all vh ∈ Vh and qh ∈Wh,0:∫

Ω0

(FS) : ∇0vh dΩ0 +
∫

Γouter

βu · vh dΓouter = 0 (4.6)

and ∫
Ω0

(KF−T∇0p) · (F−T∇0qh) dΩ0 +
∫

Γouter

(K∇0p · N)qh dΓouter =
∫
Ω0

θqh dΩ0, (4.7)

where N is the normal vector in the reference configuration. The discrete function spaces Vh and
Wh,0 consist of linear and quadratic Lagrange basis functions of degree P = 1 and P = 2, and
are applied to discretize the displacements and the pressure, respectively [29]. Homogeneous
Dirichlet boundary conditions on Γoutflow are strongly enforced in Wh,0

Wh,0 = {qh ∈Wh : qh = 0 on Γoutflow}, (4.8)

with Wh being the unrestricted function space for the pressure. We implemented the framework
in FEniCS, where we utilized a standard Newton–Raphson method, the iterative solver GMRES
and the preconditioner Hypre_Euclid [30].
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Table 1. Model parameters for the poroelastic disc.

skeleton-related parameters flow-related parameters

disc radius r = 0.01 m initial porosityφ0 = 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Young’s modulus E = 1 kg m−1 s−2 permeability k = 3.6 × 10−3 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio ν = 0.3 dynamic viscosity η = 3.6 × 10−3 kg m−1 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

perfusion flow (at root) Qperf = 800 × 10−9 m3 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equation (2.21b), also referred to as the reduced Darcy formulation [29], is solely written in
terms of pressure, as we have eliminated the velocity upon substituting (2.10) into (2.9). Not
substituting (2.10) into (2.9) leads to a two-field formulation (velocity and pressure), also referred
to as the full Darcy system in the literature [29]. In that case, the poroelastic equations have a
saddle point structure and the discrete pressure and velocity spaces must therefore satisfy the
inf-sup condition [31,32]. One stable combination of mixed finite-element pairs is for example
a Taylor–Hood element with a pressure approximation that is one order lower than the one for
the velocity. Disadvantages of the full Darcy formulation are the increased number of degrees
of freedom or the imposition of a condition on the normal velocity component of the boundary
(impermeable domain). For a comparison of the full and reduced Darcy model in terms of solution
time, memory requirements and accuracy we refer the interested reader to [29].

5. Numerical examples
In this section, we study numerical examples to demonstrate the behaviour of our modelling
framework based on the connection of the poroelastic model and the synthetic vascular trees.

(a) Poroelastic circular disc coupled to planar trees
We first consider a poroelastic circular domain that is perfused by a fluid provided by a planar
supplying tree and returned into a planar draining tree (see also figure 3). We emphasize that the
objective of the two-dimensional simulations is to study the model behaviour and its sensitivity
with respect to model parameters. It is not intended to represent the liver tissue itself. The
simplified geometry, with limited number of terminal branches, serves as a computationally
inexpensive starting point and permits examination of key aspects (inflow parameters, vessel tree
depths, contact boundary conditions) without introducing further complexity. For the poroelastic
disc, we choose the parameters in SI units summarized in table 1. We have chosen standard values
for the material parameters E = 1 kg m−1 s−2 and K = k/ν = 1 kg m s−1 and a simple geometry
for the proof of concept. The purpose is to study the influence of the model parameters (inflow
parameters, vessel tree depths and contact boundary condition) qualitatively. Modifying E and
K changes the solution fields only quantitatively, not qualitatively. Instead of a spring-type
condition, we fix the outer boundary for the moment, so that u = 0 at the outer circular boundary.
Each tree consists of 50 terminal vessels. For the bell-shaped source terms in (4.4), we choose b = 3.

We discretize the circular domain with a mesh of 36 826 triangular elements. We first obtain the
solutions for the primary field variables u and p. With the pressure p known, we can compute the
porosity field φ from (2.20) and the velocity from Darcy’s Law (2.10). The solution of the pressure
p is depicted in figure 4. The white streamlines indicate the flow direction. One can observe higher
pressure levels close to the inlet vessels. We also observe large pressure values in the area on the
top near the boundary. These drive the fluid to an outlet further away. We note that these high
pressure values are the result of an accumulation of inlet and non-existence of outlet vessels in
the area. The influence of the boundary effects is negligible in this regard. Increasing the number
of outlet points would eliminate the high pressure values. The displacement solution u and the
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Figure 4. Solution for the pressure field p (kg m−1 s−2). The depicted tree is the supplying tree. The streamlines illustrate flow
from the inlets to the outlets.
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Figure 5. Solution for displacement fieldu (m) with a fixed outer boundary and solution for porosity fieldφ. (a) Displacement
u and (b) porosityφ.

porosity field φ are plotted in figure 5a,b. Higher displacement values can be observed in the areas
of high pressure values. The porosity field φ fluctuates around the initial porosity value of 0.5.

(i) Model sensitivity with respect to bell-shaped source term

Figure 6 depicts the pressure field p for two different values of the scaling factor b of the bell-
shaped function (4.4). In the case of b = 1 (figure 6a), the resulting pressure values are centred on a
smaller area. Therefore, the maximum values also exceed the ones obtained with b = 3 (figure 6b).
Nevertheless, the global behaviour is in both cases equivalent. For all further computations, we
proceed with b = 3.
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Figure 6. Solution for pressure field p (kg m−1 s−2) with different scaling factors b of bell-shaped function. (a) Solution for
b= 1 and (b) solution for b= 3.
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Figure 7. Solution for displacement fieldu (m) for different stiffness values in the contact boundary conditions. (a) Stiff contact
withα = 5 × 102 and (b) soft contact withα = 1 × 10.

(ii) Model sensitivity with respect to stiffness of surrounding tissue

Figure 7 plots the displacement solution for a stiffer (α = 5 × 102) and softer resistance (α = 1 × 10)
in equation (4.2). In the stiff case (figure 7a), the displacement field is virtually indistinguishable
from the solution with fixed boundary depicted in figure 5a. In the soft case, the boundary can
deform, leading to a significantly different displacement pattern, plotted in figure 7b. Due to
the weakening of the constraint in the soft case, the maximum displacement value decreases
compared to the one in the stiff case.

(iii) Model sensitivity with respect to hierarchical tree depth

We finally investigate the model behaviour at two different tree depths with 250 and 1500 terminal
vessels for both trees. In order to resolve the circular voids adequately, we refine the mesh with
114 320 elements in the former case to a mesh with 353 344 triangular elements in the latter
case. The results of the pressure field p are presented in figure 8. It is evident that the pressure
drop between inlets and outlets is smaller in the case of a finer tree hierarchy (figure 8a,b).
When the trees are resolved with a larger depth, the outlet and inlet points seem to be more
homogeneously distributed from a global perspective, resulting in shorter distances between the
inlet and outlet. Thus, the global behaviour leads to a pressure solution that shows a more fine
grained distribution. If we characterize a certain number of inlets or outlets with a representative
volume element (RVE), we observe that the relative pattern of the solution with respect to such
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Figure 8. Solution for pressure field p (kg m−1 s−2) obtained with two different tree resolutions. (a) Pressure p for 250
inlets/outlets and (b) pressure p for 1500 inlets/outlets.
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Figure9. Solution for velocity fieldw (m s−1) obtainedwith twodifferent tree resolutions. (a) Velocityw for 250 inlets/outlets
and (b) velocityw for 1500 inlets/outlets.

an RVE does not change. It is easy to verify from the plots that one can find similar patterns of the
pressure field of the coarser tree in the pressure field of the finer tree.

The velocity field in figure 9 shows similar behaviour to that of the pressure field. For the finer
tree, the maximum flow resulting from the pressure fields decreases. Additionally, the relative
pattern of the solution does not change when representing a certain number of inlets or outlets
with an RVE. Both plots show similar patterns of flow fields with respect to such an RVE.

(b) Towards simulation based assessment of liver resection
The liver has a unique ability to regenerate itself after damage. As a consequence, liver resections
can be performed in which up to 75% of the liver can be removed [33], for instance, to remove a
cancerous tumour. A liver resection requires careful patient-specific planning in order to minimize
the risk of liver failure. Since the liver is characterized by a high degree of vascularization, the
regeneration process of the liver is dependent on the perfusion and redistributed flow after
resection, which affects important functions such as blood supply or metabolism [33]. During
liver resection, the surgeon needs to consider various factors, such as the location and size of the
tumour, the extent of liver tissue to be removed, and the preservation of the remaining liver tissue
to maintain liver function.
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Figure 10. Division of the human liver into eight segments corresponding to the portal vein and inferior vena cava (anterior
view). From [35] (licence: CC BY).

In practice, there exists two ways of carrying out a resection. One is the anatomical resection,
where one or more of the eight liver segments are removed. In that approach, the liver is divided
into eight functionally independent segments which allow a resection of segments without
damaging other segments [34]. Each segment has its own supply by a larger vessel of the
supplying tree that splits into smaller ones within the segment, and belongs to a branch of the
draining tree (figure 10). The second option is a non-anatomical cut which takes place when a
tumour is distributed over many segments and a bigger portion of tissue needs to be removed.
In this case, the surgeon is faced with the decision between the risk of tumour recurrence and the
risk of liver failure [36].

In this context, understanding the redistributed flow and mechanical response, e.g. stress or
pressure accumulation areas, after resection has clinical relevance [33]. In the worst case, a cut
might cause so-called orphans which are parts of the vessels trees that are not supplied with blood
anymore. In the following, we will employ our modelling framework to evaluate cut patterns and
investigate blood flow redistribution after surgical resection.

(i) Patient-specific liver geometry and discretely resolved vascularization

We generate a patient-specific liver model based on imaging data obtained from CT scans [37]. For
the segmentation of the liver, we use the open source software package three-dimensional Slicer1

and the free software Autodesk Meshmixer.2 A two-dimensional slice of the three-dimensional
voxel model and the segmentation mask of the liver domain (green colour) are shown in
figures 11a,b, respectively. The resolution of the CT scan is 0.977 × 0.977 mm within each image,
with a spacing of 2.5 mm between the slices.

Figure 12 illustrates the segmented liver with the synthetic supplying tree (hepatic artery and
portal vein) and the synthetic draining tree (hepatic vein). For both trees we choose 1000 terminal
vessels to model the flow of blood into the poroelastic domain in an accurate manner, while still
maintaining computational efficiency. We note that we recently improved the efficiency of the
vascular generation algorithm described in §3, which allows us to generate full-scale vascular
trees with around 1 000 000 terminal vessels [6].

After creating the liver geometry, we assume spherical voids at the terminal points of the
outlets where we impose zero pressure as a reference level. We then generate a mesh which
contains 7 385 996 tetrahedral elements.

1See www.slicer.org/.

2See https://meshmixer.com/.
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(b)(a)

Figure 11. Abdominal CT scan containing the liver with a resolution of 0.977 × 0.977 mm and a slice thickness of 2.5 mm.
(a) Two-dimensional slice and (b) segmentation mask with liver in green.

(a) (b)

Figure 12. Patient-specific three-dimensional liver model with the supplying (purple) and draining (blue) vascular tree
structures. (a) Anterior view and (b) inferior view.

(ii) Anatomical versus non-anatomical resection

Detecting areas with insufficient blood supply and locally quantifying the perfusion efficiency
is helpful for the assessment of the post-operative outcome. We first show the results of the
liver model before resection. The physiological parameters that have been used for all liver
computations are listed in table 2. The stiffness value α = 5 × 103 has been chosen based on
the elastic properties of the surrounding organs [40]. The results for the velocity and pressure
are depicted in figures 13 and 14. We will later see that the full liver model shows a more
homogeneous blood supply to the liver tissue than the resected livers. We observe low disparities
of the pressure field (figure 14) on a global scale, and an area of pressure accumulation in the
right upper part of the unresected liver. This is the consequence of (i) the modelling choices of the
inflow and outflow and (ii) the homogenization over a wide range of length scales of vessels [29].
Later in this section, we will observe a significant change of these disparities when performing a
resection.

We now assume that the left lateral section of the liver is affected by a tumour. We use our
framework for modelling perfusion to investigate the behaviour of the liver after resection. In
particular, we consider two options for potential cuts that are illustrated in figure 15. Figure 16
illustrates the remaining domain of the liver and the remaining vascular tree after resection
for both cut options in the inferior view. The first cut option in figure 16a corresponds to an
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Figure 13. Solution for velocityw (m s−1) of full liver model (inferior view). (a) Outer boundary and (b) interior slices.
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Figure 14. Solution for pressure field p (kg m−1 s−2) of full liver model (inferior view). (a) Visualization with vessel trees and
(b) visualization without vessel trees.

Table 2. Simulation parameters for the liver problem [8,38,39].

tissue deformation-related parameters perfusion-related parameters

Young’s modulus E = 5000 kg m−1 s−2 initial porosityφ0 = 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio ν = 0.35 permeability k = 2 × 10−14 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamic viscosity η = 3.6 × 10−3 kg m−1 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

inflow (at root) Qperf = 20 × 10−6 m3 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anatomical resection of the left lateral section in which the liver segments 2 and 3 are removed
(figure 10). The discretization of the remaining liver domain after anatomical resection consists of
a mesh with 5 882 171 tetrahedral elements. The second cut option in figure 16b corresponds to a
non-anatomical resection with a diagonal cut. The discretization of the remaining liver domain
consists of a mesh with 6 107 676 tetrahedral elements.

We note that vessels resolved in the vascular tree structure which are cut must be closed during
surgery to prevent blood loss. In our simulations, we therefore do not allow blood flow through
any vessel that is cut, and the blood flow of all cut vessels is redistributed over the remaining
portion of the intact tree.

The simulation results, shown in figure 17, clearly outline the difference in blood supply for
the two cuts. While the anatomical resection in figure 17a causes a homogeneously distributed
perfusion of the domain, the non-anatomical resection in figure 17b leads to a part of liver tissue
with insufficient blood supply and a part of tissue with lower blood supply compared to the same
region in the unresected liver shown in figure 13. We hence conclude that the diagonal cut would
suffer from uneven blood supply in the post-operative regenerative process.
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anatomical resection

cutting plane of non-
anatomical resection

tumour-affected
region

Figure 15. Two cutting planes for the resection of liver tissue. The blue sphere represents the tumour-affected region.

(a) (b)

Figure 16. Model representation of the resected liver. (a) Anatomical resection of the left lateral section (segments 2 and 3),
(b) non-anatomical resection.
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Figure 17. Solution for velocityw (m s−1) after resection. (a) Anatomical resection, (b) non-anatomical resection.
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Figure 18. Solution for pressure field p (kg m−1 s−2) after anatomical resection. (a) Visualization with vessel trees and
(b) visualization without vessel trees.
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Figure 19. Solution for pressure field p (kg m−1 s−2) after non-anatomical resection. (a) Visualization with vessel trees and
(b) visualization without vessel trees.

In figures 18 and 19, we compare the corresponding pressure fields. We observe that both
cut options lead to higher pressure levels in the liver after resection compared to the unresected
liver shown in figure 14. This phenomenon is physiological and known as hyperperfusion.
It occurs because the same amount of blood must now pass through a smaller remaining
liver domain. Moreover, the non-anatomical resection in figure 19 exhibits more areas with
pressure accumulation (plotted in red) and higher disparities in the pressure distribution than
the anatomical resection in figure 18.

In order to further compare the different results, it is useful to work with statistical quantities.
To this purpose, we use the standard deviation (SD), variance (V) and coefficient of variation
(CV), the latter of which is defined as the ratio of the SD to the mean. Tables 3 and 4 show the
statistical quantities based on nodal values of the pressure and velocity field of both the full and
resected liver models. We observe that for both resections the mean and maximum values of
pressure and velocity significantly increase. Additionally, the SD, V and CV of the resected livers
are higher. This indicates that the distribution of the pressure and velocity is less homogeneous.
Comparing those values of the anatomical and the non-anatomical resection shows that the non-
anatomical resection causes a less homogeneous distribution. In figure 20, we plot the histogram
for the nodal values of the pressure. The zero values for the pressure corresponds to the boundary
condition at the outlet vessels. Comparing the histrogram for all three models shows the same
phenomena as described before. Namely, the mean value shifts, which indicate hyperperfusion,
and the deviation from the mean values for the resected models is higher, which indicates a less
homogeneous distribution.
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Table 3. Statistical quantities for the velocity field (nodal values).

max. (m s−1) mean (m s−1) min. (m s−1) SD (m s−1) V (m2 s−2) CV

full liver 7.87 × 10−2 0.33 × 10−2 1.7 × 10−6 0.59 × 10−2 0.35 × 10−2 1.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anatomical resection 10.96 × 10−2 0.45 × 10−2 1.2 × 10−5 0.85 × 10−2 0.73 × 10−2 1.89
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-anatomical resection 11.62 × 10−2 0.48 × 10−2 7.8 × 10−7 0.95 × 10−2 0.9 × 10−2 1.98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Statistical quantities for the pressure field (nodal values).

max. mean min. SD V

(kg m−1 s−2) (kg m−1 s−2) (kg m−1 s−2) (kg m−1 s−2) (kg2 m−2 s−4) CV
full liver 48.98 18.56 0 6.41 41.1 0.345

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anatomical resection 76.85 27.2 0 10.42 108.64 0.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-anatomical resection 84.35 30.39 0 12.52 116.66 0.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Discussion and outlook
In this paper, we presented a modelling framework that connects continuum poroelasticity and
discrete vascular tree structures to model liver tissue in terms of perfusion and deformation.
The connection is achieved through a series of modelling assumptions and decisions. Firstly,
we used bell-shaped functions as source terms in the pressure equation to impose inflow at the
interfaces of the terminal vessels of the supplying tree and the poroelastic domain. Secondly, we
introduced void regions that model the interface between the terminal vessels of the draining tree
and the poroelastic domain, where pressure boundary conditions could be applied accordingly.
The rationale behind this approach for the draining vessels is rooted in establishing boundary
conditions that mimic the physical behaviour. The most intuitive way to achieve this is by
applying a reference pressure as a Dirichlet boundary condition. Implementing a Dirichlet
condition necessitates a boundary, which led to the introduction of voids. Obviously, the primary
drawback is the required computational discretization effort, which would be significantly less
in absence of these voids. However, adopting a similar approach as for the supplying tree is
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currently not possible. Namely, the flow through the draining vessels is unknown. This aspect
will remain a focus of future investigations.

Additionally, we took into account contact to surrounding tissue, using nonlinear springs
at the boundary of the poroelastic domain. We demonstrated the numerical behaviour and
versatility of our modelling framework via a poroelastic circular disc connected to planar trees.
We performed a series of sensitivity studies to test the model behaviour with respect to source
term parameters, stiff and soft contact and hierarchical tree depth.

We then investigated our modelling framework for a realistic liver problem that consisted of
two different resection scenarios of a patient-specific liver. We have used a patient-specific liver
geometry model based on imaging data obtained from CT scans. The vessel trees themselves are
not patient-specific in the sense that these are segmented directly from imaging data. However,
they have a patient-specific component by its connection to the geometry. We then have computed
the flow redistribution after the two different cuts. As expected, the numerical results indicate a
difference in blood supply for the two resection scenarios, in which the anatomically resected liver
performed satisfactorily and the non-anatomically resected liver exhibited parts with insufficient
blood supply. Regardless of the depth we choose for the tree structure, an observable relative
difference in pressure and flow is always present. The main purpose of the model, however, is to
visualize changes in perfusion on the organ scale, e.g. due resections. This does not qualitatively
change when increasing the number of vessels. The current number seems appropriate to assess
redistributed flow and pressure disparities on a global organ scale. The model is not intended to
depict a physiological response with respect to local perfusion characteristics, metabolism or any
other physiological function. It is also evident that the finer the tree is, the more homogeneous the
pressure and flow fields become. Of course, the quantitative results of framework would change
when adopting a finer tree (and computational mesh).

In summary, our results demonstrate that the combination of poromechanics and synthetic
vascular trees can be a useful tool for modelling liver perfusion and constitutes a first step
towards assessing the redistributed flow characteristics after a liver resection. In the current
framework, we incorporate different length scales from the vascular trees and the lobule scale.
Indeed, we agree that from a physiological point of view, one usually considers these scales
separately. However, in this work, the relative pressure and flow differences play an major role.
It should be noted that the model does not cover further processes in the liver, e.g. growth or
metabolism. Moreover, the model is not intended to depict local effects concerning perfusion
but instead captures perfusion characteristics regarding redistributed flow. It offers a better
visualization of perfusion changes on the organ scale, e.g. due to resection. Although a robust
validation study is still lacking, we can already observe that the presented approach has the
potential to aid in assessing and optimizing different surgical resection scenarios regarding the
perfusion. However, incorporating the liver functions and pathological changes is essential in
advancing the proposed model towards a evidence-based physiological simulation tool suitable
in clinical practice. Furthermore, accounting for physiological response (e.g. metabolism, growth
or pathological changes) is beyond the scope of this work and is not essential for the current
application. In order to fully ensure applicability, material parameters such as elastic parameters,
permeability and porosity must be further personalized, and a number of validation studies need
to be performed. These aspects are a subject of ongoing work.

In addition, we think that the model must be further refined, potentially driven trough
future results from validation studies. One idea is to complement the poroleastic model
by multiple compartments. Instead of lumping the lower levels of the vascular tree and
the microcirculation together, compartmentalized poroelasticity would allow us to represent
perfusion and deformation within the lower levels of the perfusion tree and the microcirculation
separately, taking into account their different physiology. Furthermore, deformation and stresses
play an important role for the further development towards modelling liver regrowth after
surgical resection. This is the reason for adopting a poroelastic model rather than a porous media
model; mechanical behaviour of the tissue is indispensable. Currently, we extend our framework
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by a liver regrowth model on a patient-specific basis that is guided by the goal of reducing
stresses in the liver tissue. In this context, we also go from the current one-way coupling without
any reverse influence on the synthetic trees to a fully coupled model that takes into account
deformation induced change of the location of the terminal vessels and their interface regions
with the poroelastic domain.
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