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Abstract

We show that in the variational multiscale framework, the weak enforcement of essential boundary conditions via Nitsche’s
ethod corresponds directly to a particular choice of projection operator. The consistency, symmetry and penalty terms of
itsche’s method all originate from the fine-scale closure dictated by the corresponding scale decomposition. As a result of

his formalism, we are able to determine the exact fine-scale contributions in Nitsche-type formulations. In the context of
he advection–diffusion equation, we develop a residual-based model that incorporates the non-vanishing fine scales at the
irichlet boundaries. This results in an additional boundary term with a new model parameter. We then propose a parameter

stimation strategy for all parameters involved that is also consistent for higher-order basis functions. We illustrate with
umerical experiments that our new augmented model mitigates the overly diffusive behavior that the classical residual-based
ne-scale model exhibits in boundary layers at boundaries with weakly enforced essential conditions.

c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The variational multiscale (VMS) method was established in the 1990s by Hughes and coworkers as a universal
ramework for developing and classifying stabilized methods [1–5]. It was hypothesized that the unresolved
ne-scale nature of the solution of the partial differential equation is of key importance for the stability of finite-
lement schemes. The VMS methodology offers a means to ascertain the effect of the fine-scale solution onto
he resolved finite element solution. As exact expressions for the fine scales are often not available, these fine-
cale effects must be modeled. A particularly prevalent class of fine-scale models is that of the residual-based

∗ Correspondence to: Institute of Mechanics and Computational Mechanics, Leibniz Universität Hannover, Appelstraße 9a, 30167 Hanover,
Germany.

E-mail addresses: Stein.Stoter@ibnm.uni-hannover.de (S.K.F. Stoter), M.F.P.tenEikelder@tudelft.nl (M.F.P. ten Eikelder),
F.d.Prenter@tue.nl (F. de Prenter), I.Akkerman@tudelft.nl (I. Akkerman), E.H.v.Brummelen@tue.nl (E.H. van Brummelen),
C.V.Verhoosel@tue.nl (C.V. Verhoosel), Schillinger@ibnm.uni-hannover.de (D. Schillinger).
https://doi.org/10.1016/j.cma.2021.113878
0045-7825/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.113878
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.113878&domain=pdf
mailto:Stein.Stoter@ibnm.uni-hannover.de
mailto:M.F.P.tenEikelder@tudelft.nl
mailto:F.d.Prenter@tue.nl
mailto:I.Akkerman@tudelft.nl
mailto:E.H.v.Brummelen@tue.nl
mailto:C.V.Verhoosel@tue.nl
mailto:Schillinger@ibnm.uni-hannover.de
https://doi.org/10.1016/j.cma.2021.113878


S.K.F. Stoter, M.F.P. ten Eikelder, F. de Prenter et al. Computer Methods in Applied Mechanics and Engineering 382 (2021) 113878

w
w
m
i
e
c
i
e
t

v
s
c
v
w
s
i

f
o
s
i
w
p
c

2

Ω

i

models [6,7]. By assuming vanishing fine scales on element boundaries, the associated fine-scale problem can be
solved on each element locally. The fine-scale solution is then approximated as the residual of the coarse-scale
finite element solution, multiplied by the averaged Green’s function. It has been shown that the resulting stabilized
formulation is closely related (and often equivalent) to classical stabilized methods [8,9]. Typical examples include
streamline-upwind Petrov–Galerkin (SUPG) [8–11], Galerkin least-squares (GLS) [9,11,12], and pressure-stabilized
Petrov–Galerkin (PSPG) methods [13]. More recently, residual-based modeling of the fine scales has found its
use as an effective turbulence model for finite element implementations of the Navier–Stokes equations [7,14–18].
Of particular interest to our current work are the fine-scale models that include element boundaries contributions
[19,20]. Fine-scale modeling techniques have also been developed for capturing sharp internal and boundary layers
[5,21–25]. Since all these models are mathematically inspired by the fine-scale equations, their parameters are
clearly defined and they yield consistent formulations. Both these points are in contrast with typical eddy viscosity
models, which are phenomenologically inspired and variationally inconsistent.

Another approach that has been shown to yield favorable results for fluid-mechanics applications is the use of
eakly imposed Dirichlet boundary conditions [26–30]. Typically, Nitsche’s method is the method of choice for
eakly enforcing essential boundary conditions. While Nitsche’s method was initially proposed in relation to energy
inimization functionals [31], both its symmetric and nonsymmetric variants have since been studied extensively

n fluid-mechanics applications [27,28,30,32]. One of the main drivers for the significant recent interest in weakly
nforced boundary conditions is their importance in immersed finite element methods. Notable references in the
ontext of fluid mechanics include [33–35], and specifically in the context of isogeometric analysis [36–41]. For
mmersed finite element methods, the approximation space is no longer tailored to fit the domain boundary. The
ssential boundary conditions can thus not easily be satisfied strongly. Hence, there is a need for weakly enforcing
he Dirichlet boundary condition in the weak formulation.

At first glance, the variational multiscale method and Nitsche’s method appear to be at conflict: the basis for a
ariational multiscale decomposition is a well-posed continuous weak formulation, but Nitsche’s method involves
paces that are unconstrained at Dirichlet boundaries and requires penalty terms that become unbounded in the
ontinuous limit. Additionally, the fine-scale solution does, by design, not vanish on the Dirichlet boundary, which
iolates one of the key assumptions on which traditional residual-based fine-scale models are built. In previous
ork, we focused on discontinuous Galerkin methods, where the discontinuities between elements give rise to

imilar issues [42,43]. The goal of this article is to completely eliminate these issues for weak boundary imposition
n Nitsche-type formulations.

The remainder of this article is structured as follows. In Section 2, we derive a variational multiscale finite element
ormulation of the advection–diffusion equation and we show that Nitsche’s method arises from a particular choice
f fine-scale closure. In Section 3, we develop the fine-scale model that takes into account the non-vanishing fine
cales at the Dirichlet boundary and provide estimates for the involved model parameters. The complete formulation
s summarized in Section 3.5. Next, in Section 4, we show that the resulting bilinear form is coercive. In Section 5,
e verify the theory for a one-dimensional model problem, and in Section 6 we computationally investigate the
erformance for a two-dimensional model problem that involves multiple boundary layers. In Section 7, we present
oncluding remarks.

. A variational multiscale derivation of the finite element formulation

The classical model problem for variational multiscale analysis is the steady advection–diffusion equation. Let
denote the spatial domain with boundary ∂Ω . The governing equations in strong form read:

a · ∇φ − ∇ · κ∇φ = f in Ω , (1a)

φ = φD on ∂ΩD, (1b)

κ ∂nφ = gN on ∂Ω+

N , (1c)

κ ∂nφ − a · nφ = gN on ∂Ω−

N , (1d)

where we consider source functions f ∈ H−1(Ω ), Dirichlet data φD ∈ H
1
2 (∂ΩD) and Neumann (or Robin) data

gN ∈ H−
1
2 (∂ΩN ). The advective velocity a = a(x) is a given solenoidal vector field (∇ ·a = 0) and the diffusivity κ
s a strictly positive constant. The Dirichlet and Neumann (or Robin) boundaries ∂ΩD and ∂ΩN are complementary

2
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subsets of the boundary ∂Ω , i.e. ∂Ω = ∂ΩD ∪ ∂ΩN , and the superscripts + and − indicate outflow (a · n ≥ 0) and
inflow parts (a · n < 0) respectively. On the boundary, the normal gradient is denoted ∂nφ = n ·∇φ. By convention,
n denotes the outward facing unit normal vector.

Approximation of the solution φ by means of a finite element method is challenging when the advection
dominates. Residual-based stabilization techniques can be highly effective, but they become insufficient when steep
boundary layers are under-resolved. In [27], this problem is addressed by using Nitsche’s method to weakly impose
the essential boundary conditions. The following finite element formulation is proposed:

Find φh
∈ Wh s.t. ∀ wh

∈ Wh
:

−
(
a · ∇wh, φh)

Ω
+

(
∇wh, κ∇φh)

Ω
−

(
τ a · ∇wh,Rφh

)
Ω̃

+
⟨
a · n wh, φh ⟩

∂Ω+

−
⟨
κ∂nφ

h, wh ⟩
∂ΩD

−
⟨
κ∂nw

h, φh ⟩
∂ΩD

+
⟨
κβwh, φh ⟩

∂ΩD
=

(
wh, f

)
Ω

−
⟨
a · n wh, φD

⟩
∂Ω−

D
(2)

+
⟨
gN , wh ⟩

∂ΩN
−

⟨
κ∂nw

h, φD
⟩
∂ΩD

+
⟨
κβwh, φD

⟩
∂ΩD

,

where
(
· , ·

)
Ω

denotes the L2-inner product on domain Ω , and
⟨
· , ·

⟩
∂Ω

denotes the duality pairing with functions
defined on the indicated boundary. The finite element approximation space Wh is constructed on a mesh T =

{Ki }
Nel
i=1, and Ω̃ is the union of open element domains.

The third term in Eq. (2) represents the SUPG stabilization term, where τ is the stabilization parameter and
Rφh = a · ∇φ − ∇ · κ∇φ − f the residual. From the variational multiscale perspective, this term represents the
interaction with the unresolved fine scales. All terms on the Dirichlet boundary correspond to Nitsche’s method.
Straightforward addition of these Nitsche terms to the SUPG-stabilized formulation goes against the philosophy
of the variational multiscale methodology: ideally, all terms in the finite element formulation follow from a scale
decomposition of the weak statement of the PDE. Our objective is to derive Eq. (2) completely from a variational
multiscale treatment of Eq. (1). This sets the sage for an improved fine-scale model that includes boundary effects.

2.1. Variational multiscale weak formulation

The first step of deriving Eq. (2) from a VMS perspective is to obtain a suitable weak formulation of Eq. (1).
Normally, one would take the standard weak formulation of the PDE which makes use of H 1

0 (Ω ) Sobolev spaces for
he test and trial functions. However, such a weak formulation is not suitable for our objective of deriving Eq. (2)
ince the finite element space Wh in Eq. (2) is unconstrained on the Dirichlet boundary and hence not a subspace
f H 1

0 (Ω ). This makes the Nitsche method non-conformal. Instead, we use H 1(Ω ) as our test and trial space. The
ssential condition must now be enforced with a Lagrange multiplier:

Find (φ, λ) ∈ W × Q s.t. ∀ (w, q) ∈ W × Q :

−
(
a · ∇w, φ

)
Ω

+
⟨
a · n w, φ

⟩
∂Ω+ +

(
∇w, κ∇φ

)
Ω

+
⟨
λ, w

⟩
∂ΩD

=
(
w, f

)
Ω

−
⟨
a · n w, φD

⟩
∂Ω−

D
+

⟨
gN , w

⟩
∂ΩN

(3a)⟨
q, φ

⟩
∂ΩD

=
⟨
q, φD

⟩
∂ΩD

, (3b)

here W = H 1(Ω ) and Q = H−
1
2 (∂ΩD). Equivalence of the strong form and this hybrid formulation dictates that

λ = −κ∂nφ.
Stabilized finite element formulations based on the hybrid form in Eq. (3) have existed for decades [44]. However,

we do not intent to discretize the Lagrange multiplier: our objective of deriving Nitsche’s method means that we
have to eliminate this auxiliary field later on. We start with a decomposition of the trial and test function spaces
into coarse and fine scales:

W × Q = (W × Q)h
⊕ (W × Q)′, (4)

e note that, in general, the coarse-scale and fine-scale spaces themselves do not decouple as Cartesian prod-
cts [45]. In fact, we will make use of a decomposition for which (W ×Q)h

̸= Wh
×Qh . Rather, since we aim to

erive a finite element formulation set in Wh , we must have dim
(
(W × Q)h

)
= dim(Wh).
3
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The components of the solutions and test functions decouple as

(φ, λ) =(φh, λh) + (φ′, λ′), (5a)

(w, q) =(wh, qh) + (w′, q ′), (5b)

ith coarse scales (φh, λh) ∈ (W × Q)h and fine scales (φ′, λ′) ∈ (W × Q)′. The direct sum decomposition in
q. (4) is associated with a projection operator:

(wh, qh) =P(w, q) ∈ (W × Q)h, (6a)

(w′, q ′) = (I − P) (w, q) ∈ (W × Q)′, (6b)

where P : W ×Q → (W ×Q)h is the projector and I : W ×Q → W ×Q is the identity operator. Formally, this
projector is incorporated in the weak formulation through the definition of the fine-scale space (W ×Q)′. It follows
from Eq. (6b) that (W × Q)′ = Im(I − P) = KerP . Then, the direct sum decomposition of Eq. (4) ensures the
unique decomposition that satisfies Eqs. (5) and (6). Using this two-scale split we arrive at the following alternative
– equivalent – weak statement:

Find (φh, λh) ∈ (W × Q)h and (φ′, λ′) ∈ (W × Q)′ s.t. ∀ (wh, qh) ∈ (W × Q)h and ∀ (w′, q ′) ∈ (W × Q)′ :

−
(
a · ∇wh, φh

+ φ′
)
Ω

+
⟨
a · n wh, φh

+ φ′
⟩
∂Ω+ +

(
∇wh, κ∇φh

+ κ∇φ′
)
Ω

+
⟨
λh

+ λ′, wh
⟩
∂ΩD

=
(
wh, f

)
Ω

−
⟨
a · n wh, φD

⟩
∂Ω−

D
+

⟨
gN , wh

⟩
∂ΩN

,
(7a)

−
(
a · ∇w′, φh

+ φ′
)
Ω

+
⟨
a · n w′, φh

+ φ′
⟩
∂Ω+ +

(
∇w′, κ∇φh

+ κ∇φ′
)
Ω

+
⟨
λh

+ λ′, w′
⟩
∂ΩD

=
(
w′, f

)
Ω

−
⟨
a · n w′, φD

⟩
∂Ω−

D
+

⟨
gN , w′

⟩
∂ΩN

,
(7b)⟨

qh, φh
+ φ′

⟩
∂ΩD

=
⟨
qh, φD

⟩
∂ΩD

, (7c)⟨
q ′, φh

+ φ′
⟩
∂ΩD

=
⟨
q ′, φD

⟩
∂ΩD

. (7d)

qs. (7a) and (7c) are the ‘coarse-scale problem’, and can be interpreted as a relation for (φh, λh) for a given (φ′, λ′).
Similarly, the ‘fine-scale problem’ of Eqs. (7b) and (7d) is a relation for the fine-scale component (φ′, λ′) ∈ (W×Q)′

or given coarse scales (φh, λh). This space, however, is infinite-dimensional and is thus not amenable to discrete
mplementation. Hence, in Eq. (7a) a closure model will be substituted in place of the fine-scale solution.

.2. Nitsche’s method as a partial fine-scale closure

Next, we show that a particular scale decomposition (i.e, projector) leads to Nitsche’s classical formulation. Our
oal is to illustrate that Nitsche’s method and the accompanying penalty terms are not in conflict with the VMS
heory, but rather can be interpreted naturally in the VMS framework as a particular choice of fine-scale closure.
onsider the following projection operator, which we will refer to as the Nitsche projector:

PN : W × Q → (W × Q)h

(φ, λ) ↦→ (φh, −κ∂nφ
h) ,

(8)

ith

φh
= arg inf

φh∈Wh

1
2

(
κ(∇φ − ∇φh), ∇φ − ∇φh)

Ω
+

⟨
λ + κ∂nφ

h, φ − φh ⟩
∂ΩD

+
1
2

⟨
κβ(φ − φh), φ − φh ⟩

∂ΩD
+

1
2

⟨
a · n(φ − φh), φ − φh ⟩

∂Ω+ .

(9)

ith these definitions, PN is a linear and bounded operator on all of W ×Q. Moreover, it is idempotent, making
t a projector. For Eq. (9) to yield a unique coarse-scale solution for arbitrary data (that is, an arbitrary pair (φ, λ)),
here is a lower limit to β [31,46].

The range of PN can be identified as:

Ran(P ) =: (W × Q)h
= {(w, −κ∂ w) : w ∈ Wh

} , (10)
N n

4
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such that indeed dim
(
(W×Q)h

)
= dim(Wh). This is a result of the strict relation between the coarse-scale solutions

h and λh . From Eq. (8) we have:

λh
= −κ∂nφ

h , (11a)

qh
= −κ∂nw

h . (11b)

By taking the Gâteaux derivative of the potential in Eq. (9) and subsequently replacing φ−φh by φ′ and λ+κ∂nφ
h

y λ′, we obtain the following associated optimality condition for the fine scales:

−
(
∇vh, κ∇φ′

)
Ω

−
⟨
λ′, vh ⟩

∂ΩD
+

⟨
κ∂nv

h, φ′
⟩
∂ΩD

−
⟨
κβvh, φ′

⟩
∂ΩD

−
⟨
a · nvh, φ′

⟩
∂Ω+ = 0 ∀vh

∈ Wh .
(12)

Typically, in the variational multiscale framework, one would attempt to invert the fine-scale problem of Eq. (7b)
hile satisfying the requirement posed by Eq. (12). However, the particular structures of the coarse-scale problem

nd the Nitsche projector allow for a more direct closure of (part of) the fine scales in the coarse-scale equation [43].
fter making the choice vh

= wh in Eq. (12) we can directly substitute the identities of Eqs. (11) and (12) into
qs. (7a) and (7c) to arrive at:

−
(
a · ∇wh, φh

+ φ′
)
Ω

+
⟨
a · n wh, φh ⟩

∂Ω+ +
(
∇wh, κ∇φh)

Ω
−

⟨
κ∂nφ

h, wh ⟩
∂ΩD

−
⟨
κ∂nw

h, φh ⟩
∂ΩD

−
⟨
κβwh, φ′

⟩
∂ΩD

=
(
wh, f

)
Ω

−
⟨
a · n wh, φD

⟩
∂Ω−

D
+

⟨
gN , wh ⟩

∂ΩN
−

⟨
κ∂nw

h, φD
⟩
∂ΩD

,
(13)

hich holds for all test functions wh
∈ Wh .

Lastly, we use the identity φ′
= φ − φh

= φD − φh on the Dirichlet boundary. Then, we are left with Nitsche’s
ormulation of the advection–diffusion problem:

Find φh
∈ Wh s.t. ∀ wh

∈ Wh
:

−
(
a · ∇wh, φh

+ φ′
)
Ω

+
⟨
a · n wh, φh ⟩

∂Ω+ +
(
∇wh, κ∇φh)

Ω
−

⟨
κ∂nφ

h, wh ⟩
∂ΩD

−
⟨
κ∂nw

h, φh ⟩
∂ΩD

+
⟨
κβwh, φh ⟩

∂ΩD
=

(
wh, f

)
Ω

−
⟨
a · n wh, φD

⟩
∂Ω−

D
+

⟨
gN , wh ⟩

∂ΩN
(14)

−
⟨
κ∂nw

h, φD
⟩
∂ΩD

+
⟨
κβwh, φD

⟩
∂ΩD

,

where only a single (advective) fine-scale term remains. We emphasize that both the symmetric term of Nitsche’s
method as well as its penalty term find their origin in the scale decomposition per the projection operator of Eqs. (8)
and (9).

Remark 1. If we write the remaining fine-scale term as
(
Lstabw

h, φ′
)
Ω

, then we observe that the appropriate
fine-scale model (read: stabilization technique) in conjunction with Nitsche’s method involves the SUPG operator
Lstab = −a · ∇. Typically, in variational multiscale stabilized methods, the adjoint differential operator Lstab =

−a ·∇ −∇ ·κ∇ is proposed. However, since the diffusive part of the fine-scale terms has vanished due to the small
scale orthogonality given in Eq. (12), the diffusive operator no longer occurs in the fine-scale term.

2.3. Analysis of the Nitsche projector

The projector defines the scale decomposition of Eq. (4) via Eq. (6). This means that it impacts the appropriate
modeling choices in the development of the fine-scale model. Before continuing the fine-scale modeling, we thus
first dedicate a short study on the Nitsche projector. The ensuing analysis will heavily rely on the work by Hughes
and Sangalli in [47], who performed the same analysis using the H 1

0 and L2 projectors.
A projector may be defined by a finite number of functional constraints; as many as the dimension of Wh :

PN (φ, λ) = (φh, −κ∂nφ
h) such that:⟨

µi , (φ − φh, λ + κ∂nφ
h)

⟩
= 0 i = 1, . . . , dim(Wh) .

(15)

The µi functionals lie in the dual space of W × Q. For the Nitsche projector they may be inferred from the weak
statement of Eq. (12). By performing integration by parts on its first term while interpreting the resulting integral in
the sense of distributions, the functional constraints follow from substituting the various candidates for vh . For a one-

dimensional domain with a set of nodes Γ = {x1, x2, . . . , xn} and element domains T = {[x1, x2], . . . , [xn−1, xn]}

5
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L

and a typical nodal finite element construction of Wh with polynomial order P , we find:

PN (φ, λ) = (φh, −κ∂nφ
h) such that:

φ(xi ) − φh(xi ) = 0 for xi ∈ Γ \ ∂ΩD , (16a)∫
K (φ − φh)x p

= 0 for K ∈ T and 0 ≤ p ≤ P − 2 , (16b)

(λ + κ∂nφ
h)

⏐⏐
xi

+ κβ(φ − φh)
⏐⏐
xi

= 0 for xi ∈ ∂Ω−

D , (16c)

(λ + κ∂nφ
h)

⏐⏐
xi

+ (κβ + a · n)(φ − φh)
⏐⏐
xi

= 0 for xi ∈ ∂Ω+

D . (16d)

The first requirement dictates nodal exactness of the finite element formulation, and together with the second
equirement these coincide with the constraints from the H 1

0 projector [47]. The last two originate from the extra
egrees of freedom on the Dirichlet boundary.

emark 2. The central role of the projector can be useful for the interpretation of the obtained finite element
olution. For instance, for the current example of Nitsche’s method, a better approximation of the exact diffusive
ux (the solution field λ) on the Dirichlet boundary could be obtained by rewriting Eqs. (16c) and (16d):

λ = −κ∂nφ = −κ∂nφ
h
+ κβ(φh

− φD) on ∂Ω−

D , (17a)

λ = −κ∂nφ = −κ∂nφ
h
+ (κβ + a · n)(φh

− φD) on ∂Ω+

D . (17b)

The same expressions were also proposed in [27] by Bazilevs et al., although motivated based on discrete
onservation laws.

emark 3. In [48], Harari and Albocher perform a spectral analysis of Nitsche’s formulation. Their work shows
hat its spectrum consists of (i) traditional modes that are independent of the Nitsche parameter and which vanish
n Dirichlet boundaries, and (ii) modes that depend on the Nitsche parameter and are locally supported in a layer
long the Dirichlet boundaries. In Eq. (16), we observe a similar split in the (functional) constraints imposed by
he Nitsche projector.

. A residual-based multiscale model with non-vanishing fine-scale boundary values

For our finite element scheme to yield solutions close to φh
= PN φ, the weighted integral of φ′ in formulation

14) needs to be taken into account. The closure relation for these remaining fine scales follows from the fine-scale
roblem of Eq. (7b). In general, the fine-scale problem cannot be solved exactly and modeling approximations are
ecessary. Following [8,47], we will only make approximations that are consistent with the one-dimensional case.
e take the following steps:

• Section 3.1: we write the fine-scale solution in terms of the coarse-scale residual. This relation also involves
the fine-scale Lagrange multiplier.

• Section 3.2: we introduce the fine-scale Green’s function. We eliminate the fine-scale Lagrange multiplier by
making use of the fine-scale Green’s function corresponding to the H 1

0 -projector. The resulting explicit relation
between φ′ and φh is still exact, and it now includes a fine-scale boundary term.

• Section 3.3: we consider the one-dimensional case to simplify the expressions. The fine-scale Green’s function
localizes and the integrals can be rewritten to yield parameters τ and γ . The latter is the new modeling
parameter that is a result from the non-vanishing fine scales on the Dirichlet boundary.

• Section 3.4: we generalize the exact expression from the one-dimensional case to obtain a practical method
for multi-dimensional simulations. Based on the one-dimensional case, we derive explicit expressions for the
effective model parameters for lower and higher order approximation spaces.

e provide a summary of the finite element formulation and all model parameters in Section 3.5.

.1. Inversion of the fine-scale problem

We start by developing an explicit relation that determines φ′ from a given coarse-scale function φh and a given
agrange multiplier λ. For any λ, we can define a fine-scale space W ′ as:

′
W = {w ∈ W : PN (w, λ) = (0, 0)} . (18)

6
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We then consider the following form of Eq. (7b), the fine-scale problem:

Find φ′
∈ W ′ s.t. ∀ w′

∈ W ′
:⟨

L∗w′, φ′
⟩
=

⟨
Rφh , w

′
⟩
−

⟨
λ, w′

⟩
∂ΩD

, (19)

here we introduce the adjoint operator L∗ and the residual Rφh , whose definitions follow from Eq. (7b) as:⟨
L∗w′, ·

⟩
= −

(
a · ∇w′, ·

)
Ω

+
⟨
a · n w′, ·

⟩
∂Ω+ +

(
∇w′, κ∇·

)
Ω

, (20a)⟨
Rφh , w′

⟩
=

(
w′, f

)
Ω

+
⟨
w′, gN

⟩
∂ΩN

−
⟨
a · n w′, φD

⟩
∂Ω−

D
+

(
a · ∇w′, φh

)
Ω

−
⟨
a · n w′, φh

⟩
∂Ω+ −

(
∇w′, κ∇φh

)
Ω

.
(20b)

We hypothesize that one can find a function w′(y) ∈ W ′ such that L∗w′(y) acts on any function in v ∈ W in
the following way:

⟨
L∗w′, v

⟩
=

⟨
δx , v

⟩
+

dim(Wh )∑
i=1

ci
⟨
µi , v

⟩
, (21)

where this particular function is called the fine-scale Green’s function g′(x, y). The δx denotes the Dirac delta
distribution at x , and the µi functionals refer to the functional constraints from Eq. (15). When we substitute this

ne-scale Green’s function as w′(y) in (19), we obtain:

⟨
L∗g′(x, y), φ′

⟩
=

⟨
δx , φ

′
⟩
+

dim(Wh )∑
i=1

⟨
ciµi , φ

′
⟩

= φ′(x) =
⟨
Rφh , g′(x, y)

⟩
−

⟨
λ, g′(x, y)

⟩
∂ΩD

,

(22)

here the summation vanishes due to Eq. (15).

.2. Adoption of the H 1
0 fine-scale Green’s function

The fine-scale Green’s function in Eqs. (21) and (22) corresponds to the Nitsche projector. However, most
iterature on the variational multiscale method focuses on a scale decomposition by means of the H 1

0 projector.
o maintain the connection with existing fine-scale models, we reintroduce the H 1

0 fine-scale Green’s function as
ollows:

g′

N (x, y) = g′

H1
0
(x, y) + g̃′(x, y) . (23)

he newly added subscripts indicate the projector with which the fine-scale Green’s function is associated.
The similarity between the H 1

0 projector and the Nitsche projector can be expressed in terms of their imposed
unctional constraints, i.e., those from Eq. (15). The set of functions µi corresponding to the projector PH1

0
is a

subset of those of PN . If we order the set µi such that coinciding occurrences come first, then we may write for
the H 1

0 fine-scale Green’s function:

⟨
L∗g′

H1
0
(x, y), v

⟩
=

⟨
δx , v

⟩
+

dim(Wh
∩H1

0 )∑
i=1

di (x)
⟨
µi , v

⟩
−

⟨
Hg′

H1
0
, v

⟩
∂ΩD

∀ v ∈ W , (24)

where the last term is due to the non-zero boundary values of v on ∂ΩD . For our advection–diffusion model problem
he operator H is:

H = −κ n · ∇y . (25)

fter substitution of Eq. (24) in Eq. (21), we obtain a result for g̃′(x, y) that holds for all v ∈ W:

⟨
L∗g̃′(x, y), v⟩ =

dim(Wh
∩H1

0 )∑
i=1

(ci (x) − di (x))
⟨
µi , v

⟩
+

dim(Wh )∑
h 1

ci (x)
⟨
µi , v

⟩
+

⟨
Hg′

H1
0
, v

⟩
∂ΩD

. (26)

i=dim(W ∩H0 )+1

7
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Substitution of Eq. (23) into Eq. (22) then gives:

φ′(x) =
⟨
Rφh , g′

H1
0

+ g̃′
⟩
−

⟨
λ, g′

H1
0

+ g̃′
⟩
∂ΩD

,

=
⟨
Rφh , g′

H1
0

⟩
+

⟨
Rφh , g̃′

⟩
−

⟨
λ, g̃′

⟩
∂ΩD

,

=
⟨
Rφh , g′

H1
0

⟩
+

⟨
L∗g̃′, φ′

⟩
,

=
⟨
Rφh , g′

H1
0

⟩
+

⟨
Hg′

H1
0
, φ′

⟩
∂ΩD

,

(27)

here we make use of g′

H1
0

= 0 on ∂ΩD in the second equality, of Eq. (19) in the third equality, and of Eq. (26)
ollowed by Eq. (15) in the fourth equality.

emark 4. The inversion posed by Eq. (27) is no longer unique; it is satisfied for solutions φh from PN (φ, −κ∂nφ),
ut also for solutions φh

= PH1
0
φ. However, the partial fine-scale closure discussed in Section 2.2 is not satisfied

y φh
= PH1

0
φ. The formulation obtained after substitution of Eq. (27) into Nitsche’s coarse-scale formulation of

q. (14) will hence be uniquely satisfied by the coarse-scale solution defined by the Nitsche projector.

The final result of Eq. (27) may be rewritten in a somewhat more familiar form by substituting the definition of
he weak residual from Eq. (20b) and by performing reverse integration by parts. We obtain the following expression,
o be interpreted in the sense of distributions:

φ′(x) =

∫
Ω

Rφh g′

H1
0
(x, y) dy +

∫
∂ΩD

H g′

H1
0
(x, y)(φD − φh) dy (28)

he original residual-based model assumes that the fine-scale solution vanishes on element boundaries [7], and
ence that the second term in Eq. (28) cancels. We aim not to make this assumption, and this will be the key term
hat we retain to obtain a more suitable fine-scale model.

The only term in the coarse-scale formulation of Eq. (14) in which φ′ appears is the advective term. We thus
nally obtain the fine-scale contribution to the coarse-scale equation as:

−

∫
Ω

a · ∇wh φ′ dx = −

∫
Ω

∫
Ω

a · ∇wh(x) g′

H1
0
(x, y)Rφh (y) dy dx

−

∫
Ω

∫
∂ΩD

a · ∇wh(x)Hg′

H1
0
(x, y)

(
φD(y) − φh(y)

)
dy dx .

(29)

he double integration and the limited availability of Green’s functions make the closure relation of Eq. (29), albeit
xact, unsuitable for computational use. Simplifications via approximations need to be introduced. The strategy that
e will employ repeatedly in this article is to reformulate such that exactness is maintained in the case of constant
hysical parameters on a one-dimensional domain, while ease of implementation is established in the general case.

.3. The classical one-dimensional case

In the one-dimensional case, the nodal exactness induced by the PH1
0

projector results in an element-local
ne-scale Green’s function [47]. The double integrals in Eq. (29) can thus be split in contributions of individual
lements. The newly added term only affects elements that lie adjacent to the Dirichlet boundary, where the precise
alue of the fine-scale solution is known as φ′

= φD − φh . Let us consider the contribution of one element that
hares a node with the Dirichlet boundary:

−

∫
K

a · ∇wh φ′ dx = −

∫
K

∫
K

a · ∇wh(x) g′

H1
0
(x, y)Rφh (y) dy dx

−

∫
K

∫
∂K∩∂ΩD

a · ∇wh(x)Hg′

H1
0
(x, y)

(
φD(y) − φh(y)

)
dy dx .

(30)

o simplify, we use the polynomial representation of the test function wh
⏐⏐

K and the residual Rφh
⏐⏐

K . When Wh is
onstructed with P-order nodal elements and the source function f is at most polynomial order P − 1, then:

−a · ∇wh(x) = −a
P∑

ŵi i x i−1
; Rφh (y) =

P∑
R̂ j y j−1 for x ∈ K , y ∈ K . (31)
i=1 j=1

8
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We also have the following properties of the fine-scale Green’s function g′

H1
0
(x, y):∫

K

∫
K

xq g′

H1
0
(x, y) yr dy dx = 0 when q < P − 1 or r < P − 1 , (32a)∫

K

∫
∂K

xq Hg′

H1
0
(x, y)dy dx = 0 when q < P. (32b)

Property (32a) is shown in [47], and we prove (32b) in A.1. Substituting Eq. (31) into Eq. (30) while using Eq. (32)
ields:

−

∫
K

a · ∇wh φ′ dx = −

∫
K

∫
K

a
(
ŵP P x P−1) g′

H1
0
(x, y)

(
R̂P y P−1) dy dx

−

∫
K

∫
∂K∩∂ΩD

a
(
ŵP P x P−1)Hg′

H1
0
(x, y)

(
φD(y) − φh(y)

)
dy dx .

(33)

e assume a to be constant in K , and we extract a and all other constants from the double integration. We then
ntegrate the two right hand side terms over K and F := ∂K ∩ ∂ΩD respectively, and we divide them by |K | and
F |:

−

∫
K

a · ∇wh φ′ dx = −

∫
K

a ŵP P h P−1
[ 1
|K |

∫
K

∫
K

x P−1

h P−1 g′

H1
0
(x, y)

y P−1

h P−1 dy dx
]

R̂P h P−1 dx̂

−

∫
F

a ŵP P h P−1
[ 1
|F |

∫
K

∫
F

x P−1

h P−1 Hg′

H1
0
(x, y) dy dx

] (
φD(x̂) − φh(x̂)

)
dx̂ ,

(34)

here we can identify the following model parameters:

τ =
1

|K |

∫
K

∫
K

x P−1

h P−1 g′

H1
0
(x, y)

y P−1

h P−1 dy dx , (35a)

γ =
1

|F |

∫
K

∫
F

x P−1

h P−1 Hg′

H1
0
(x, y) dy dx . (35b)

The multiplication and division by h P−1 in Eq. (34) (h being the element size) ensures that the parameters in
Eq. (35) remain dimensionally consistent with varying polynomial order.

3.4. Fine-scale closure generalization

Up until now, all derivations have been exact. To make use of the integral expressions in Eq. (34) on
multi-dimensional domains, we approximate them by the following inner products:

−

∫
K

a ŵP P h P−1τ R̂P h P−1 dx̂ ≈ −
(
a · ∇wh, τeffRφh

)
K , (36a)

−

∫
F

a ŵP P h P−1γ (φD − φh) dx̂ ≈ −
⟨
a · ∇wh, γeff (φD − φh)

⟩
F+ . (36b)

As Eq. (36b) indicates, we only make use of the newly proposed term at the outflow Dirichlet boundary
F+

:= ∂K ∩ ∂Ω+

D . This is where the boundary layers occur, and where the weak enforcement of the Dirichlet
conditions results in impactful fine-scale boundary values.

All the approximations involved in the final finite element formulation may be traced back to these two equations.
Essentially, they shift the modeling effort onto the effective stabilization parameters τeff and γeff. We design τeff and
γeff such that these are approximations of τ and γ that take into account the change of (bi)linear forms, while being
uitable for multi-dimensional computations for arbitrary order polynomial basis functions.

.4.1. Estimation of operator impact
In the one-dimensional case, the bilinear forms of the left-hand and right-hand sides of Eq. (36) may be written

s:

Bvol(wh, φh) =
(
a

(
h P−1 )

∂ P

P
wh, τ

(
h P−1 )

∂ P−1

P−1 Lφh)
K , (37a)
(P − 1)! ∂x (P − 1)! ∂x
9



S.K.F. Stoter, M.F.P. ten Eikelder, F. de Prenter et al. Computer Methods in Applied Mechanics and Engineering 382 (2021) 113878

I
a

c

3

a
(
b
i

B̃vol(wh, φh) =
(
a

∂

∂x
wh, τeffLφh)

K , (37b)

Bbdy(wh, φh) =
⟨
a

(
h P−1

(P − 1)!

)
∂ P

∂x P
wh, γ φh ⟩

∂K∩∂Ω+

D
, (37c)

B̃bdy(wh, φh) =
⟨
a

∂

∂x
wh, γeff φ

h ⟩
∂K∩∂Ω+

D
. (37d)

The impact of these different bilinear forms may be quantified by considering their norms:

∥B∥ := sup
∂
∂x wh ̸=0, ∂

∂x φh ̸=0

|B(wh, φh)|
∥

∂
∂x wh∥L2(K )∥

∂
∂x φh∥L2(K )

, (38)

where we have chosen to define the norm of the bilinear forms with respect to the H 1-seminorm of its arguments,
as this seminorm is one of the terms in the optimality condition induced by the Nitsche projector according to
Eq. (9).

We choose τeff and γeff such that the impact of these bilinear forms equal: ∥Bvol∥ = ∥B̃vol∥ and ∥Bbdy∥ = ∥B̃bdy∥.
f we assume constant parameters in K , and the advective dominant case such that Lφh may be approximated by

∂
∂x φh , then we obtain:

τeff ≈ τ

(
h P−1

(P − 1)!

)2
∥
(

∂ P

∂x P · , ∂ P

∂x P ·
)

K ∥

∥
(

∂
∂x · , ∂

∂x ·
)

K ∥
= τ

(
h P−1

(P − 1)!

)2

sup
∂
∂x wh ̸=0

∥
∂ P

∂x P wh
∥

2
L2(K )

∥
∂
∂x wh∥2

L2(K )

, (39a)

γeff ≈ γ

(
h P−1

(P − 1)!

)
∥
⟨

∂ P

∂x P · , ·
⟩
F∥

∥
⟨

∂
∂x · , ·

⟩
F∥

= γ

(
h P−1

(P − 1)!

) sup ∂
∂x wh ̸=0

(
|

∂ P

∂x P wh
|
⏐⏐

F

/
∥

∂
∂x wh

∥L2(K )

)
sup ∂

∂x wh ̸=0

(
|

∂
∂x wh |

⏐⏐
F

/
∥

∂
∂x wh∥L2(K )

) . (39b)

The inverse inequalities in these expressions are computable by hand [49]. For linear, quadratic and cubic
oarse-scale basis functions, the relations between the parameters τeff and τ , and γeff and γ become:

τeff, γeff ≈

⎧⎪⎨⎪⎩
τ, γ for P = 1 ,

12 τ,
√

3 γ for P = 2 ,

180 τ, 2
√

5 γ for P = 3 .

(40)

.4.2. τ -parameter approximation for P ∈ {1, 2, 3}

In the literature, we find that the τ -parameter that is used with higher-order basis functions is often the same
s that for P = 1 (i.e., obtained from the element local Green’s function), sometimes with a P-dependent scaling
see, e.g., [7,27,50]). In this section, we propose an approximation of τ for linear, quadratic and cubic elements
ased on the actual fine-scale Green’s functions. These are devised such that they limit to the exact expressions
n the advection (τa) or diffusion (τd ) dominated cases. Using the definition of τ from Eq. (35a), together with

the fine-scale Green’s functions from the Appendix, the following exact expressions for τ may be computed for
P = 1, 2 and 3 respectively [1,10,47]:

τ1 =
h

2|a|

(
2 + Pe − (2 − Pe) exp(Pe)

−Pe + Pe exp(Pe)

)
=:

h
2|a|

ξ1(Pe) , (41a)

τ2 =
h

72|a|

(
12 + 6Pe + Pe2

− (12 − 6Pe + Pe2) exp(Pe)
−2Pe − Pe2 + (2Pe − Pe2) exp(Pe)

)
=:

h
2|a|

ξ2(Pe) , (41b)

τ3 =
h

1800|a|

(
120 + 60Pe + 12Pe2

+ Pe3
− (120 − 60Pe + 12Pe2

− Pe3) exp(Pe)
−12Pe − 6Pe2 − Pe3 + (12Pe − 6Pe2 + Pe3) exp(Pe)

)
=:

h
2|a|

ξ3(Pe) , (41c)
10
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Fig. 1. Exact ξ and η functions and their approximations for the one-dimensional case. Showing the correct scaling behavior.

here Pe =
|a| h
κ

is the element Péclet number and ξ is the upwind function. From these equations we obtain the
following advective and diffusive limits:

τ1,a := lim
Pe→∞

τ1 =
h

2 |a|
, τ1,d := lim

Pe→0+
τ1 =

h2

12κ
, (42a)

τ2,a =
h

72 |a|
, τ2,d =

h2

720κ
, (42b)

τ3,a =
h

1800 |a|
, τ3,d =

h2

25200κ
. (42c)

The following approximation strategy for τ satisfies the above limits and is used frequently in stabilized
ethods [7,13,51–53]:

τ ≈
1√

τ−2
a + τ−2

d

. (43)

o determine the effectiveness of the scaling for the various polynomial orders, we substitute Eq. (42) into (43).
n all cases, we can rewrite the expression to obtain the effective approximate upwind function. For example, for
inear elements:

τ1 ≈
1√

4 |a|2

h2 +
144κ2

h4

=
h

2|a|

1
√

1 + 36Pe−2
=:

h
2|a|

ξ̃1(Pe). (44)

ig. 1(a) illustrates how the approximate upwind functions ξ̃ (Pe) relates to the exact upwind functions of Eq. (41).
he figure shows that the approximation of τ according to Eq. (43) has the correct asymptotic limits, and converges

o these limits at the correct rates. We observe that this holds for each polynomial order.

.4.3. γ -parameter approximation for P ∈ {1, 2, 3}

In a similar sense, we wish to construct an approximate γ , based on generic (spatial dimension independent)
arameters, that share the asymptotic scaling behavior of the exact one-dimensional expression. The exact
xpressions of γ may be computed from Eq. (35b) as:

γ1 =
h
2

(
2 + 2Pen − 2 exp(Pen)

Pen − Pen exp(Pen)

)
=:

h
2

η1(Pen) , (45a)

γ2 =
h

(
12 + 8Pen + 2Pe2

n − (12 − 4Pen) exp(Pen)
2 2

)
=:

h
η2(Pen) , (45b)
12 2Pen + Pen − (2Pen − Pen) exp(Pen) 2
11
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γ3 =
h
60

(
120 + 72Pen + 18Pe2

n + 2Pe3
n − (120 − 48Pen + 6Pe2

n) exp(Pen)
12Pen + 6Pe2

n + Pe3
n − (12Pen − 6Pe2

n + Pe3
n) exp(Pen)

)
=:

h
2

η3(Pen), (45c)

for P = 1, 2 and 3 respectively. Pen =
a·n h

κ
is a boundary type element Péclet number. Since we only make use

f γ on the outflow boundary (a · n ≥ 0), we exclusively consider Pen ≥ 0 in the following. The advective and
iffusive limits of these expressions are:

γ1,a := lim
Pen→∞

γ1 = 0 , γ1,d := lim
Pen→0+

γ1 =
h
2

, (46a)

γ2,a = 0 , γ2,d =
h
12

, (46b)

γ3,a = 0 , γ3,d =
h
60

. (46c)

Just like for the parameter τ we require an approximation strategy that satisfies these limits. The strategy of Eq. (43)
is not viable as the limits in Eq. (46) do not depend on a nor on κ . Instead, we deduce the following scaling of γ

based on its definition from Eq. (35b):

γ ∝
⏐⏐H⏐⏐ τ̂ , (47)

where |H| represents the scaling induced by H as defined in Eq. (25), and τ̂ is a modified τ -like quantity that
takes into account the difference in domain of integration between γ and τ in Eq. (35). H scales linearly with κ

and inversely with length, such that we may choose |H| ∝

√
κτ−1

d . By adopting a similar approximation for τ̂ as
Eq. (43), we obtain:

γ ≈ cs

√
κτ−1

d

√
1

c1τ
−2
a + c2τ

−2
d

= cs

√
κ

c1τdτ
−2
a + c2τ

−1
d

. (48)

s takes into account the shape effect of the element as the measure of the relevant boundary versus the measure
f the element interior:

cs :=
h|F |

|K |
, (49)

where the multiplication with h ensures a mesh size independent scaling, and h should be the representative element
size that is used in the approximation of τ through τa and τd . In this article we use the longest element edge. In
he one-dimensional case |F | = 1 and |K | = h, such that cs = 1.

The coefficients c1 and c2 are introduced to capture the difference in scaling between τ and τ̂ . They can be
determined from Eq. (48) by ensuring the correct limiting behavior of γ in the one-dimensional case. For example,
for linear elements, substituting the limits of Eq. (42a) results in:

γ1 ≈
h
2

√
1

1
12 c1 Pe2

n + 3 c2
=:

h
2

η̃1(Pen). (50)

y ensuring that Eq. (50) has the same asymptotic limits as Eq. (45) and also has the same convergence rate towards
ero, we obtain c1 = 3 and c2 = 1/3. The same strategy results in c1 = 1.25 and c2 = 0.2 for P = 2 and c1 = 7/9
nd c2 = 1/7 for P = 3. Fig. 1(b) shows the approximate and exact boundary functions and confirms that the
pproximation of γ displays the correct asymptotic scaling behavior for all polynomial orders.

.5. Complete finite element formulation

With all the modeling terms included, the finite element formulation becomes:

Find φh
∈ Wh s.t. ∀ wh

∈ Wh
:

B(wh, φh) = BA(wh, φh) + BD(wh, φh) + BVMS,Ω̃ (wh, φh) + BVMS,∂Ω+

D
(wh, φh)

=
(
wh, f

)
Ω

+
⟨
gN , wh

⟩
∂ΩN

−
⟨
a · n wh, φD

⟩
∂Ω−

D
−

⟨
κ∂nw

h, φD
⟩
∂ΩD

+
⟨
κβwh, φD

⟩
∂ΩD

+
(
τeff a · ∇wh, f

)
Ω

+
⟨
γeff a · ∇wh , φD

⟩
∂Ω+ ,

(51)
D

12



S.K.F. Stoter, M.F.P. ten Eikelder, F. de Prenter et al. Computer Methods in Applied Mechanics and Engineering 382 (2021) 113878

T
T
t

E

Table 1
Overview of τeff and γeff expressions for different elements and polynomial degrees.

P = 1 P = 2 P = 3

τeff:

√
1

τ−2
1,a + τ−2

1,d

√
1

9 τ−2
1,a + 25 τ−2

1,d

√
1

25 τ−2
1,a +

1225
9 τ−2

1,d

γeff: cs

√
κ

3τ1,d τ−2
1,a +

1
3 τ−1

1,d

cs

√
κ

9τ1,d τ−2
1,a + 4τ−1

1,d

cs

√
κ

15τ1,d τ−2
1,a + 15τ−1

1,d

Element:

cs (Eq. (49)): 1 4
√

3
2
√

2
3 h/b

where the advection and diffusion parts of the bilinear form are:

BA(wh, φh) = −
(
a · ∇wh, φh)

Ω
+

⟨
a · n wh, φh ⟩

∂Ω+ , (52a)

BD(wh, φh) =
(
κ∇wh, ∇φh)

Ω
−

⟨
κ∂nφ

h, wh ⟩
∂ΩD

−
⟨
κ∂nw

h, φh ⟩
∂ΩD

+
⟨
κβwh, φh ⟩

∂ΩD
, (52b)

and where the two variational multiscale components are:

BVMS,Ω̃ (wh, φh) =
(
τeff a · ∇wh, a · ∇φh

− ∇ · κ∇φh)
Ω̃

, (53a)

BVMS,∂Ω+

D
(wh, φh) =

⟨
γeff a · ∇wh, φh ⟩

∂Ω+

D
, (53b)

with Ω̃ the sum of open element domains.
Expressions for the parameters τeff and γeff are collected in Table 1. These expressions take into account all the

considerations discussed in Sections 3.4.1–3.4.3. As the table shows, we have formulated all model parameters such
that they depend exclusively on τ1,a and τ1,d , i.e., those relating to linear elements. The approach for computing these
limiting values remains flexible. For example, one could incorporate the Jacobian of the element mapping [7,28,40],
use local length-scales and Péclet numbers (taking into account element distortions and aspect ratios) [53], or use the
analytical expressions of Eq. (42a) and the element diameter. The requirements on β are discussed in the following
section.

4. Analysis of existence and uniqueness

As touched upon in Remark 4 in Section 3.2, the uniqueness of the fine-scale inversion is not a trivial issue.
Additionally, the required simplification and modeling steps discussed in Section 3.4 may raise further questions
regarding the existence of the approximate coarse-scale solution. In a finite-dimensional functional setting, existence
and uniqueness follow directly from the coercivity of the bilinear form, which we analyze in this section.

In the analysis, we assume that a and κ are constant in Ω and that the grid is (quasi) uniform, such that also
β, τa and τd can be chosen as global constants. The derivations can trivially be modified for non-uniform grids or
non-constant a and κ and element-wise parameters β, τa and τd . We further assume that the parameter τeff satisfies:

τeff ≤ Cdτ1,d ≤ inf
wh∈Wh

1
2κ

∥∇wh
∥

2
Ω

∥∆wh∥2
Ω̃

∝
h2

κ
(54)

he first inequality is satisfied due to the harmonic mean structure of τeff, where the Cd ’s follow directly from
able 1 as 1, 1

5 and 3
35 for linear, quadratic and cubic basis functions respectively. On a one-dimensional mesh,

his means that Cdτ1,d =
h2

12κ
, h2

60κ
and h2

140κ
. In this one-dimensional case, the inverse estimate in Eq. (54) may be

explicitly computed, resulting in maxima of ∞, h2

24κ
and h2

120κ
for polynomial orders of 1, 2 and 3. The condition of

q. (54) is thus satisfied.
13
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Finally, we require that β satisfies:

β ≥ 4 (T1 + c2
s T2) ∝

1
h

, (55)

with:

T1 = sup
wh∈Wh

∥∂nw
h
∥

2
∂ΩD

∥∇wh∥2
Ω

∝
1
h

, (56a)

T2 = sup
wh∈Wh

∥a · ∇wh
∥

2
∂Ω+

D

∥a · ∇wh∥2
Ω

∝
1
h

. (56b)

We carry out the coercivity proof for the different components of the bilinear forms separately, and then look at
he formulation as a whole. We start with determining a relation between the model parameters γeff and τeff.

Lemma 4.1. For P = 1, 2 or 3, the expressions from Table 1 are such that γeff is bounded by τeff according to:

γ 2
eff ≤ 3c2

s κτeff. (57)

roof. We write the γeff and τeff expressions from Table 1 in the following general form:

τeff =

√
1

(Caτ1,a)−2 + (Cdτ1,d )−2 (58)

γeff = cs

√
κ

τ1,d

√
1

(C1τ1,a)−2 + (C2τ1,d )−2 (59)

ividing γeff by τeff and squaring gives:(
γeff

τeff

)2

= c2
s

κ

τ1,d

(Caτ1,a)−2
+ (Cdτ1,d )−2

(C1τ1,a)−2 + (C2τ1,d )−2 (60)

fter multiplying both sides by Cdτ1,d and using Cdτ1,d ≥ τ , we obtain:

Cdτ1,d

(
γeff

τeff

)2

= c2
s κ

CdC−2
a τ−2

1,a + C−1
d τ−2

1,d

(C1τ1,a)−2 + (C2τ1,d )−2 ≥ τeff

(
γeff

τeff

)2

=
γ 2

eff

τeff
(61)

he fraction may be bound from above as:

γ 2
eff

τeff
≤ c2

s κ
max( Cd

C2
a
, 1

Cd
)(τ−2

1,a + τ−2
1,d )

min( 1
C2

1
, 1

C2
2

)(τ−2
1,a + τ−2

1,d )
= c2

s κ
max( Cd

C2
a
, 1

Cd
)

min( 1
C2

1
, 1

C2
2

)
=

⎧⎪⎨⎪⎩
3 c2

s κ for P = 1 ,
5
4 c2

s κ for P = 2 ,
7
9 c2

s κ for P = 3 .

(62)

q. (57) follows from the maximum of the three cases. □

emma 4.2. The bilinear form in Eq. (52a) satisfies the following coercivity result:

BA(wh, wh) ≥
1
2∥

√
|a · n|wh

∥
2
∂Ω ∀ wh

∈ Wh, (63)

where the norms are L2 norms on the indicated domains.

Proof. Direct substitution of φh
= wh into Eq. (52a) results in:

BA(wh, wh) = −
(
a · ∇wh, wh)

Ω
+

⟨
a · n wh, wh ⟩

∂Ω+ . (64)

aking use of the property ∇ · a = 0, the first term may be rewritten as follows:

−

∫
Ω

∇ · ( 1
2 a (wh)2) = −

1
2

∫
∂Ω

a · n (wh)2
=

1
2

∫
∂Ω−

|a · n| (wh)2
−

1
2

∫
∂Ω+

|a · n| (wh)2. (65)

ubstitution into Eq. (64) completes the proof. □
14
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Lemma 4.3. Under the condition posed by Eq. (54), the bilinear form in Eq. (52b) satisfies the following lower
bound:

BD(wh, wh) ≥
1
2κ ∥∇wh

∥
2
Ω + (β − 2T1)κ∥wh

∥
2
∂ΩD

∀ wh
∈ Wh, (66)

where the norms are L2 norms on the indicated domains, and T1 is given in Eq. (56a).

Proof. Direct substitution of φh
= wh into Eq. (52b) results in:

BD(wh, wh) = κ∥∇wh
∥

2
Ω − 2

⟨
κ ∂nw

h, wh ⟩
∂ΩD

+ βκ∥wh
∥

2
∂ΩD

. (67)

By using Young’s inequality to bound the nonsymmetric term, we obtain:

−2
⟨
κ ∂nw

h, wh ⟩
∂ΩD

≥ −ϵκ∥ ∂nw
h
∥

2
∂ΩD

−
κ

ϵ
∥wh

∥
2
∂ΩD

,

≥ −ϵT1κ∥∇wh
∥

2
Ω −

κ

ϵ
∥wh

∥
2
∂ΩD

, (68)

here T1 is defined in Eq. (56a). Choosing the parameter from Young’s inequality as ϵ = 1/(2T1) completes the
roof. □

emma 4.4. Under the condition posed by Eq. (54), the volumetric variational multiscale term in Eq. (53a) satisfies
he following lower bound:

BVMS,Ω̃ (wh, wh) ≥
1
2τeff ∥a · ∇wh

∥
2
Ω −

1
4κ ∥∇wh

∥
2
Ω ∀ wh

∈ Wh, (69)

here the norms are L2 norms on the indicated domains.

roof. Direct substitution of φh
= wh results in:

BVMS,Ω̃ (wh, wh) = τeff∥a · ∇wh
∥

2
+

(√
τeff a · ∇wh,

√
τeff κ∆wh)

Ω̃
. (70)

ith Young’s inequality we bound the second term from below:

BVMS,Ω̃ (wh, wh) ≥ τeff∥a · ∇wh
∥

2
−

1
2τeff∥a · ∇wh

∥
2
−

1
2τeffκ

2
∥∆wh

∥
2. (71)

sing the assumed bound of τeff from Eq. (54) completes the proof. □

emma 4.5. The boundary variational multiscale term in Eq. (53b) satisfies the following lower bound:

BVMS,∂Ω+

D
(wh, φh) ≥ −

1
4τeff∥a · ∇wh

∥
2
Ω − 3 c2

s T2κ∥wh
∥

2
∂Ω+

D
∀ wh

∈ Wh, (72)

here the norms are L2 norms on the indicated domains.

roof. After substitution of φh
= wh , we obtain:

BVMS,∂Ω+

D
(wh, wh) =

⟨
a · ∇wh, γeffw

h ⟩
∂Ω+

D
(73)

≥ −
1
2ε∥a · ∇wh

∥
2
∂Ω+

D
−

1
2

γ 2
eff

ε
∥wh

∥
2
∂Ω+

D

≥ −
1
2εT2∥a · ∇wh

∥
2
Ω −

1
2

γ 2
eff

ε
∥wh

∥
2
∂Ω+

D
. (74)

The first inequality follows from Young’s inequality with parameter ε, and the second inequality as well as the
parameter T2 originate from the inverse estimate of Eq. (56b). Choosing the parameter ε = τeff/(2T2) and using the
result of Lemma 4.1 to relate τeff and γeff completes the poof. □

Theorem 4.1. The combined bilinear form of Eq. (51) satisfies the following coercivity result:

B(wh, wh) ≥
1
4τeff∥a · ∇wh

∥
2
Ω +

1
2∥

√
|a · n|wh

∥
2
∂Ω +

1
4κ∥∇wh

∥
2
Ω +

1
4βκ∥wh

∥
2
∂ΩD

∀ wh
∈ Wh, (75)

where the norms are L2 norms on the indicated domains.
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Fig. 2. One-dimensional results using three linear elements.

roof. Direct substitution of φh
= wh in the bilinear form, and using the results of Lemmas 4.2 to 4.5, results in:

B(wh, wh) = BA(wh, wh) + BD(wh, wh) + BVMS,Ω̃ (wh, wh) + BVMS,∂Ω+

D
(wh, wh)

≥
1
2∥

√
|a · n|wh

∥
2
∂Ω +

1
2κ ∥∇wh

∥
2
Ω + (β − 2T1)κ∥wh

∥
2
∂ΩD

+
1
2τeff ∥a · ∇wh

∥
2
Ω

−
1
4κ ∥∇wh

∥
2
Ω −

1
4τeff∥a · ∇wh

∥
2
Ω − 3 c2

s T2κ∥wh
∥

2
∂Ω+

D
(76)

=
1
4τeff∥a · ∇wh

∥
2
Ω +

1
2∥

√
|a · n|wh

∥
2
∂Ω +

1
4κ∥∇wh

∥
2
Ω

+ (β − 2T1 − 3 c2
s T2)κ∥wh

∥
2
∂ΩD

. (77)

sing the assumption on β from Eq. (55) completes the proof. □

emark 5. Note that both Nitsche’s method (Lemma 4.3) and the VMS method (Lemma 4.4) rely on the term
∥∇w∥

2
Ω for their stability. As a result, the combined use of VMS and weakly enforced boundary conditions requires

larger penalty factor β compared to the typical choice of β = 2T1 for the standard Nitsche’s method [36].

. Numerical verification for a one-dimensional model problem

We present a number of numerical experiments to verify the derivation from Sections 3.1–3.3, and to investigate
he accuracy improvement that may be achieved by using the new residual-based fine-scale model of Sections 3.4
nd 3.5 . For all subsequent simulations, we choose β such that it satisfies the requirements determined in Section 4.

.1. Linear basis functions

Fig. 2 shows the result for a simulation with a = 0.8, κ = 0.02 and β = 2/h on the domain Ω = [ 0, 0.3 ],
iscretized with three linear elements. The global Péclet number is 12 and the element local Péclet number is 4.
he solid green line shows the exact solution φ. With the current discretization, the boundary layer falls completely
ithin a single element. We obtain the exact coarse-scale solution, indicated with the black line, by projecting the

xact solution onto the finite element mesh with the Nitsche projector from Section 2.2. The blue dotted line is
btained by only using the classical VMS term, equivalent to γ = 0, whereas the red dashed solution incorporates
he exact augmented VMS model from Eq. (34) with the exact parameter definitions from Eq. (35). Finally, the line
ith the circular markers shows the result when the generalized model of Sections 3.4 and 3.5 .
It is a celebrated fact that for this model problem the VMS method with strongly enforced boundary conditions

esults in nodally exact solutions [3]. The results of Fig. 2(a) show that this property is lost when the boundary
onditions are enforced weakly, and that the under-resolved boundary layer affects the approximation on a large
art of the domain. Fig. 2(b) shows that the magnitude of the fine-scale solution on the outflow boundary of the
omain is considerable. Hence, the assumption of vanishing fine scales, which is critical in the derivation of the

lassical VMS model, is severely violated. In contrast, the augmented VMS model is exactly the Nitsche projection
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Fig. 3. One-dimensional results using three quadratic or cubic elements.

of the exact solution. As a result, the nodal exactness of the computational solution is retrieved and the adverse
effect of the boundary layer is constrained to a single element. Due to the relative simplicity of this problem, the
solution obtained with the generalized model is only affected by the estimation of the model parameters. As it is
nearly identical to the exact coarse-scale solution we conclude that, at least for this simple case, the estimation
strategy is effective.

Remark 6. It is well known that for the current case the classical VMS term simplifies to a (consistent) diffusion
term. Interestingly, in a similar sense the augmented term in the VMS formulation simplifies to a reduced diffusion
in the symmetric part of Nitsche’s formulation. In this context, the solution obtained by using the classical VMS
model may be interpreted as excessively diffusive in the boundary layer, which is (consistently) counteracted by
the augmented VMS term.

5.2. Higher-order basis functions

We use the same problem formulation but discretize the domain with three higher-order elements. With quadratic
basis functions and β = 3/h we obtain the solutions from Figs. 3(a) and 3(b), and with cubic basis function and
β = 6/h we obtain the solutions from Figs. 3(c) and 3(d). We can largely draw the same conclusions as for the
linear basis functions: the fine-scale solution deviates significantly from zero at the outflow boundary. As a result, the
solution quality of the classical VMS model is spoiled. By using the augmented VMS model we obtain the Nitsche
projection of the exact solution. This gives a nodally exact solution, where the adverse effect of the boundary layer
is contained within the boundary element. These points are all compliant with the theory of Section 2.2.

Additionally, we observe that the solution for the approximate augmented VMS model is very close to the exact
coarse-scale solution. For the linear basis functions we concluded that the estimations of the model parameters are
17
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Fig. 4. Two-dimensional model problem for linear basis functions.

effective. We can now also conclude that the approximation of the differential operator described Section 3.4.1 is
effective, at least for this one-dimensional case.

6. Numerical experiments for a two-dimensional model problem

Next, we present numerical experiments for a two-dimensional domain. All the model approximations become
important, and their effectiveness can be assessed.

6.1. Linear basis functions, high and low advective dominance

We consider a model problem of a unit square with a circular hole of radius 0.24 in the center. Dirichlet conditions
are enforced on all boundaries; φD = 0 around the circular cut-out, and φD = x + y around the square. The
advective field acts across the diagonal with a magnitude of 0.8, the diffusivity is κ = 0.01 or κ = 0.003 (global
Péclet numbers of 80 and 800/3 respectively), and we use β = 10/h. Fig. 4(a) schematically illustrates the model
problem, and Fig. 4(b) shows the solution for κ = 0.01 obtained on a highly refined mesh with a standard Galerkin
finite element method. The solution features multiple boundary layers with various heights and thicknesses and at
various orientations with respect to the advective vector.

The performance of the models can most clearly be assessed by investigating the resulting fine-scale solutions.
These are shown in Figs. 5 and 6 for κ = 0.01 and κ = 0.003 respectively. In Figs. 5(a) and 6(a) classical VMS
tabilization is used (i.e. γ = 0), and Figs. 5(b) and 6(b) show the results for the augmented model on a boundary
tted mesh. Additionally, we project the overrefined solution onto the coarse-scale function space using the Nitsche
rojector, and show the resulting fine-scale solution in Figs. 5(c) and 6(c). This represents the ‘exact’ fine-scale
olution.

The observations made for the one-dimensional case almost directly transfer to this two-dimensional problem.
he Nitsche projector aims to constrain the impact of the high gradients to the boundary layer elements, without
poiling the results further into the domain. This is illustrated by large fine-scale solutions in only a single row
f elements adjacent to the outflow boundary. When the classical VMS model is used, we observe a significant
hickening of the range of nonzero fine scales; interpretable as excessive diffusion in the coarse-scale solution.

hen we add the additional modeling term this thickening is decreased, which leads to nearly the same solution
uality as that obtained with the Nitsche projection. We observe these effects irrespective of the Péclet number.

To further illustrate the significance of the change, we show all three solutions on a cut-plane in Fig. 7. Note,
n particular, the similarity of Fig. 7(b) and the corresponding figure for the one-dimensional case (Fig. 2(b)).
he fine-scale solution corresponding to a completely non-stabilized computation is also plotted to put the overall

mprovement of the solution quality into context.
Convergence in the L2 or H 1 (semi)norms is not indicative of solution quality for the current case; L2 projections

2
f shocks lead to highly oscillatory solutions such that the non-stabilized solution often achieves the lowest L error,
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1

Fig. 5. Fine-scale solutions φ − φh (errors) for linear basis functions and |a| = 0.8 and κ = 0.01. Element Péclet number of approximately
3.

Fig. 6. Fine-scale solutions φ −φh (errors) for linear basis functions and |a| = 0.8 and κ = 0.003. Element Péclet number of approximately
0.

Fig. 7. Fine-scale solutions on the cut-planes from Figs. 5(c) and 6(c).

and neither the classical nor the augmented VMS model aims to achieve optimality in the H 1 seminorm as the

boundary conditions are not enforced strongly. Rather, the use of weakly enforced boundary conditions implies the
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Fig. 8. Error with respect to the exact coarse-scale solution, using linear basis functions.

ptimality condition of Eq. (12), satisfied by solutions that minimize Eq. (9). The error of interest is thus the one
ith respect to the ‘optimal’ solution; the exact coarse-scale solution obtained with the Nitsche projector. This error

ndicates the performance of the fine-scale model. This error is plotted for different mesh densities in Figs. 8(a) and
(b). Figs. 5 to 7 correspond to the third data point in these convergence graphs. Both graphs show a considerable
eduction in error when the augmented VMS model is used, which persists throughout mesh refinement. We observe
hat the (L2) error reduction from classical to augmented VMS is often of the same magnitude, if not larger, than
rom non-stabilized to classical VMS.

emark 7. Analogous to the one-dimensional case, the augmented VMS term decreases the diffusivity in the
ymmetry part of the Nitsche formulation. Different from the one-dimensional case, this becomes vector-valued
nd the formulation becomes a streamline directed modified diffusion on the boundary. One could interpret this as
boundary equivalent of the streamline diffusion that the classical VMS terms revert to for the same case.

.2. Higher-order basis functions

Next, we change the geometry to a square with a polygonal exclusion, as depicted in Fig. 9. An exact geometry
epresentation can be achieved, which, for these higher-order basis functions, is important for accurately computing
he boundary integrals for the Nitsche projection PN φ. We focus on the advection dominated case of |a| = 0.8
nd κ = 0.003, and we use β = 4P2/h.

Figs. 10(a) to 10(c) show the fine-scale solutions for quadratic basis functions obtained with the classical VMS
odel, the augmented VMS model and the Nitsche projector respectively. We observe that the classical VMS
odel with the parameter estimation developed in Sections 3.4.1 and 3.4.2 already performs remarkably well. The

oundary layers are almost exclusively contained in a single row of elements.
When we add the augmented term in the VMS model, the obtained error field qualitatively more closely resembles

he exact fine-scale solution shown in Fig. 10(c). We do, however, also observe some small oscillations. This is
onsistent with the decreased diffusion interpretation proposed in Remarks 6 and 7. A more detailed analysis of the
esulting error confirms that the solution obtained with the augmented VMS model more closely resembles the exact
oarse-scale solution defined by the Nitsche projector. This is shown in Fig. 11(a), where the resulting fine-scale
olution is plotted along a cut-plane, as well as in Fig. 11(b), which plots the L2-error with respect to the exact
oarse-scale solution for various mesh densities.

Finally, if we use cubic basis functions, we obtain the results from Figs. 12 and 13. Similar conclusions may be
rawn as for the case of quadratic basis functions: the classical model with the parameters from Table 1 leads to a
oarse-scale solution where the error is contained in the first row of elements. Adding the augmented term results
n a solution that exhibits small oscillations, but nonetheless bears closer resemblance to the exact coarse-scale

olution, as measured qualitatively in Fig. 13(a) and quantitatively in Fig. 13(b).
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a

Fig. 9. Two-dimensional model problem for higher-order basis functions.

Fig. 10. Fine-scale solutions φ − φh (errors) for quadratic basis functions and |a| = 0.8 and κ = 0.003. Element Péclet number of
pproximately 20.

Fig. 11. Detailed error behavior for quadratic basis functions.
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Fig. 12. Fine-scale solutions φ −φh (errors) for cubic basis functions and |a| = 0.8 and κ = 0.003. Element Péclet number of approximately
0.

Fig. 13. Detailed error behavior for cubic basis functions.

It should also be noted that the Dirichlet boundary conditions are more closely satisfied with these cubic basis
functions, as shown in Fig. 13(a). This is, at least in part, due to the larger penalty parameter β ∝ P2. The

ear-strong enforcement of the Dirichlet condition leaves a small fine-scale boundary value. The new term in the
ugmented model has almost no effect, and the classical VMS model suffices. Indeed, the difference between the
ugmented and classical models is not as pronounced as it was in earlier simulations. These results convey that the
ugmented model provides fine-scale corrections in the pre-asymptotic regime, and vanishes (asymptotically) when
uch fine-scale corrections cease to be relevant.

. Conclusion

In this article, we place Nitsche’s method within the variational multiscale framework. Individually, the variational
ultiscale method and Nitsche’s method have shown great value in the context of fluid mechanics. With their merger,
e are in a position to develop a fine-scale model that is appropriate for use in combination with Nitsche’s method.
When the Dirichlet boundary conditions are enforced weakly, the standard H 1

0 projector is no longer applicable
or the scale decomposition around which the variational multiscale method revolves. Instead, we propose a new

rojector, which we call the Nitsche projector. We show that adoption of this projector in the multiscale formulation
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naturally leads to Nitsche’s formulation. That is, both the penalty term and the symmetry term in Nitsche’s
formulation automatically fall into place as part of the variational multiscale scale decomposition.

The model for the remaining fine-scale terms is based on the inversion of the fine-scale problem, which, in turn,
s formally posed in the kernel space of the projector. We show that the functional constraints that define the H 1

0
rojector are a subset of those corresponding to the Nitsche projector, such that we can largely base the inversion
f the fine-scale problem on existing theory. An important difference in the context of weakly enforced boundary
onditions is that the assumption of vanishing fine scales on element boundaries is no longer applicable for elements
djacent to the Dirichlet boundary. As a result, the fine-scale model that we obtain is the classical VMS model plus
n additional boundary term. This ‘augmented’ term takes into account the non-vanishing fine scales on the Dirichlet
oundary. It may be interpreted as a consistent streamline diffusion in the symmetry term of Nitsche’s formulation.

Additionally, we develop approximations for the modeling terms τ and γ based on the fine-scale Green’s
unctions. These expressions and approximation strategies are also suitable for discretization with higher-order
lements.

With this new model, and these new parameter definitions, we retrieve nodally exact solutions on one-dimensional
eshes for all polynomial orders. This is an important property of the classical VMS model, which is lost when the

oundary conditions are enforced weakly. On two-dimensional domains, we observe that the augmented model more
losely resembles the actual coarse-scale solution defined by the Nitsche projector, as measured in an L2 sense. This
olds for all polynomial orders. For quadratic and cubic basis functions, the model without the augmented term
lready performs very well with the newly developed τ approximations. The error due to the boundary layer is
ontained in a single row of elements. For linear basis functions, however, the classical VMS model leads to a too
hick boundary layer. This is almost completely mitigated when the augmented model is added to the formulation.
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ppendix. Fine-scale Green’s functions and γ ’s vanishing moments

In this appendix we draw conclusions on the γ expression for the fine-scale Green’s functions corresponding to
P = 2 and P = 3 polynomial basis functions. Recall the definition of γ :

γ =
1

|F |

∫
K

∫
F

x P−1

h P−1 Hg′P
H1

0
(x, y) dy dx , (A.1)

here we now add the superscript P to the fine-scale Green’s function to denote the polynomial order of the
oarse-scale basis functions on which PH1

0
projects.

The fine-scale Green’s function associated to the H 1
0 -projector has been studied extensively in [47]. The authors

rove the element local nature of g′

H1
0
(x, y) in the one-dimensional case. They also show that in a single element,

he fine-scale Green’s function can then be obtained from the element local classical Green’s function:

g′P
H1

0
(x, y) = g(x, y) −

[∫ h
0 g(x, y) dy · · ·

∫ h
0 y P−2g(x, y) dy

]
⎡⎢⎣

∫ h
0

∫ h
0 g(x, y) dx dy · · ·

∫ h
0

∫ h
0 y P−2g(x, y) dx dy

...
. . .

...∫ h ∫ h P−2
∫ h ∫ h P−2 P−2

⎤⎥⎦
−1 ⎡⎢⎣

∫ h
0 g(x, y) dx

...∫ h P−2

⎤⎥⎦. (A.2)
0 0 x g(x, y) dx dy · · · 0 0 x y g(x, y) dx dy 0 x g(x, y) dx
23
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Fig. A.14. Fine-scale Green’s functions on one element for different polynomial coarse-scale basis functions. Using κ = 0.02 and a = 0.8
n an element of size h = 1.

efer to [42] or [9] for the expression for g(x, y). The resulting functions for P = 1, 2 and 3 are plotted in Fig. A.14.
or this particular case, the fine-scale Green’s function for P = 1 is exactly the element local classical Green’s
unction g(x, y).

The derivation in Section 3.3 requires vanishing ‘moments’ of the fine-scale Green’s function, as stated in
q. (32b). We prove that this holds for g′P

H1
0
(x, y) in the following theorem.

heorem A.1. Define a γ -like parameter that depends on coarse-scale polynomial order P and a Qth moment:

γ Q,P
:=

1
|F |

∫ h

0

∫
F

x Q−1

hQ−1 Hg′P
H1

0
(x, y) dy dx , (A.3)

then from the definition of g′P
H1

0
(x, y) in Eq. (A.2) it follows that:

γ Q,P
=

{
0 if Q < P ,

γ if Q = P .
(A.4)

Proof. The equality γ Q,P
= γ for Q = P follows directly from the definition of γ . For Q < P we substitute the

definition of the fine-scale Green’s function from Eq. (A.2). After carrying out the integration in Eq. (A.2), the first
vector becomes independent of the y-variable, and the last vector independent of the x-variable. The center matrix
is filled with constants. This means that the differential operator and integration from Eq. (A.3) act on different
vectors and they can thus be separated. After re-ordering of derivatives and integrals we obtain:

γ Q,P
=γ Q,1

−

[∫ h
0

∫ h
0 x Q−1g(x, y) dx dy · · ·

∫ h
0

∫ h
0 x Q−1 y P−2g(x, y) dx dy

]
⎡⎢⎣

∫ h
0

∫ h
0 g(x, y) dx dy · · ·

∫ h
0

∫ h
0 y P−2g(x, y) dx dy

...
. . .

...∫ h
0

∫ h
0 x P−2g(x, y) dx dy · · ·

∫ h
0

∫ h
0 x P−2 y P−2g(x, y) dx dy

⎤⎥⎦
−1

⎡⎢⎢⎢⎣ γ 1,1

...

γ P−2,1

⎤⎥⎥⎥⎦ .
(A.5)

For ease of notation we denote the involved vectors and matrix ζ T , C−1 and ξ . By recognizing that ζ T is the Qth
row of C we can write ζ T

= eT
QC, where eQ is a vector of zeros with a 1 at the Qth row. Substitution into the

matrix–vector multiplication yields:

γ
Q,P
F = γ

Q,1
F − ζ T C−1ξ = γ

Q,1
F − eT

QC C−1ξ = γ
Q,1
F − eT

Qξ = γ
Q,1
F − γ

Q,1
F = 0 . (A.6)

Note that this only holds for Q < P , since C has P − 1 rows. □
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