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Abstract

In this paper we show that the variational multiscale method together with the variation entropy concept form the underlying
theoretical framework of discontinuity capturing. The variation entropy [M.F.P. ten Eikelder and I. Akkerman, Comput. Methods
Appl. Mech. Engrg. 355 (2019) 261-283] is the recently introduced concept that equips total variation diminishing solutions with
an entropy foundation. This is the missing ingredient in order to show that the variational multiscale method can capture sharp
layers. The novel framework naturally equips the variational multiscale method with a class of discontinuity capturing operators.
This class includes the popular YZβ method and methods based on the residual of the variation-entropy. The discontinuity
capturing mechanisms do not contain ad hoc devices and appropriate length scales are derived. Numerical results obtained
with quadratic NURBS are virtually oscillation-free and show sharp layers, which confirms the viability of the methodology.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Discontinuity capturing operators; Variational multiscale method; Variation entropy; TVD property; Variation entropy residual-based;
Isogeometric analysis

1. Introduction

Discontinuities in physical quantities such as densities, pressures and velocities often occur in scientific and
industrial problems. Common examples include explosions, cavitation events, two-fluid flows and traffic congestion.
These phenomena are generally modeled by (nonlinear) conservation laws. Numerical methods that aim to solve
these conservation laws encounter difficulties at the shock waves. Straightforward discretizations pollute the
discrete solution by spurious oscillations. To overcome this, the numerical method typically introduces additional
diffusion/viscosity near the shock. There exist many possibilities, depending on the underlying numerical method,
on how to determine this diffusion term.

In the finite-difference and finite-volume world, additional diffusion is often the result of one of the following
approaches. Perhaps the simplest technique to introduce diffusion is to use a standard upwind method. This removes
the spurious oscillations, but the price one has to pay is a significant decrease of accuracy. An alternative is to
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use a monotonic upwind scheme for conservation laws (MUSCL) [1–4], also known as a limiter scheme, which
reduces the numerical flux to first-order near the shock. Several other approaches equip the numerical method with
discrete features. Examples include schemes with the monotonicity property [5], the total variation diminishing
schemes [5–7] or methods that ensure the maximum principle [5,8], e.g. in two-fluid flow simulations [9–11].

In the context of finite element methods, the spurious wiggles were first addressed with the Streamline upwind-
Petrov Galerkin (SUPG) method for incompressible flow problems in the well-known 1982 paper [12] and for
compressible flow problems in [13,14]. The compressible flow case required a quasi-linear form which leads to the
concept of generalized advection operators. In both cases the SUPG method adds diffusion only in the direction of
the flow and is not subject to artificial diffusion criticism. The SUPG method provides accurate solutions without
oscillations when strong shocks are absent. In regions near sharp layers a more robust formulation was needed.
To this purpose, several shock capturing operator mechanisms have been introduced. One of the first of these
techniques has been proposed in [15]. This method provides control of gradient of the solution. The sharp layers
in compressible flows were addressed by Hughes et al. who proposed to use entropy variables [16] and entropy
variables in combination with the SUPG operator [17,18]. Le Beau and Tezduyar equipped the original SUPG
method with a shock capturing operator in conservative variables [19,20]. The numerical computations reveal that
results of using entropy variables without shock-capturing are nearly indistinguishable from using conservative
variables with shock-capturing [20]. This might indicate a similarity or relation between shock capturing methods
and entropy variables. Another important discontinuity capturing method is Y Zβ shock-capturing [21–24]. This
shock-capturing is based on scaled residuals and contains user-defined parameters which can be chosen depending
on the smoothness of the layer. Other work on discontinuity capturing includes the CAU method [25] in which
the flow velocity in the SUPG term is replaced by an approximate upwind direction and the work of Sampaio and
Coutinho [26] in which an effective transport velocity is used. For a more complete overview of stabilized methods
and shock capturing techniques for compressible flows we refer to the review papers [27–29].

A particular class of stabilized finite element methods is that of the variational multiscale methods [30–32]. The
idea is to incorporate the effect of the small-scales via a model equation in the resolved part of the solution. This
improves the stability of the finite element scheme. This framework provides a theoretical foundation of stabilized
methods. It has been widely applied for the computation of incompressible turbulence [33–40]. The corresponding
turbulence model is residual-based and does not contain ad-hoc mechanisms. The technique finds also applications
in free-surface flow and FSI computations [41–44]. The multiscale formulation is often augmented with an artificial
discontinuity capturing term when sharp layer may occur. The VMS method offers rich possibilities to design new
methods. It can be used to enforce a particular property in the numerical method, such as a total variation bounding
constraint [45] and the maximum principle [46]. Other recent work includes a VMS method that employs particular
fine-scale models to arrive at a discontinuity capturing term [47].

More recently a popular discontinuity capturing method known by the name entropy viscosity method has been
introduced [48]. This method bases the added nonlinear viscosity on the entropy residual. The motivation originates
from the fact the entropy satisfies a conservation equation in smooth regions and an inequality in at shock waves.
Basing the viscosity on the entropy production does not affect the smooth regions while in shock regions numerical
dissipation is added. The entropy viscosity method has been further developed in the framework of discontinuous
Galerkin methods in [49]. Furthermore, the stability of explicit entropy viscosity methods has been analyzed [50].
The method is a promising technique and has shown quite well behavior on many benchmark problems. It is however
a heuristic approach for which, to the best knowledge of the authors, the theoretical justification is still missing.
We cite

Guermond et al. [48]: ‘the amount of theory to justify the approach is almost non-existent. The justification of
the method is mainly heuristic for the time being’.

The idea of using an entropy concept to locate sharp layers is interesting. We have recently proposed the variation
entropy theory [51] which provides entropy solutions with a new perspective and can be viewed an extension of
total variation diminishing solutions. In order to identify sharp layers in solution profiles, the idea is to look at
the gradient of the solution instead of at the solution itself. The variation entropy concept provides an entropy
framework to analyze the behavior of the gradient of the solution using the so-called variation entropy condition.
In a numerical setting this can be a tool to locate Gibbs oscillations.
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All the previously mentioned techniques that add numerical diffusion in the region of the sharp layer are in some
way the result of equipping the method with a favorable numerical property. The methods are ad hoc technologies
that are not derived from the continuous partial differential equation. We note that Bazilevs et al. [24] conjecture
that the variational multiscale method is the correct theoretical groundwork for discontinuity capturing methods:

Bazilevs et al. [24]: ‘While stabilized methods may be derived on the basis of the variational multiscale
methodology, discontinuity capturing is an ad hoc technique. Nevertheless, it is a widely used technology that
enables a practitioner to successfully tackle real-world applications. We believe that the multiscale framework with
a proper set of optimality conditions is the right underlying theoretical structure that may more naturally lead to
discontinuity capturing formulations. This conjecture is intriguing and warrants further investigation’.

In the current paper we prove that this conjecture is valid. To establish this, we unify previous ideas and
concepts into a variational multiscale-variation entropy framework. We believe that the variation entropy theory
was the missing element in order to be able to demonstrate the correctness of the conjecture in [24]. The variation
entropy idea tells us the location of the viscosity whereas the multiscale concept provides a way to model the
viscosity via the missing scales. Merging the variational multiscale method with the variation entropy framework
naturally augments the VMS method with a discontinuity capturing operator. We sketch this in Fig. 1. We propose
a discontinuity capturing viscosity that is variation-entropy residual-based. In some sense this is similar to the
entropy viscosity method [48] where the residual is based on the entropy. In contrast, our discontinuity capturing
term comes with theoretical foundations. We emphasize that the proposed framework does not contain ad hoc
devices. The approximate small-scale models are physics-based by means of Green’s functions and residuals.

Fig. 1. Merging the variational multiscale method and the variation entropy concept leads to a discontinuity capturing term.

The remainder of the paper can be summarized as follows. The Section 2 briefly introduces the notion of
entropy and variation entropy solutions. In Section 3 we present the discontinuity capturing framework based on the
variational multiscale analysis and variation entropy theory. Section 4 presents numerical results and in Section 5
we draw the conclusions and outline avenues for future research.

2. Entropy solutions

2.1. The classical entropy

Let Ω ⊂ Rd be an open and connected domain. Consider the scalar-valued conservation problem:

find φ : Ω × I → R such that

∂tφ + ∇ · f = 0, (x, t) ∈ Ω × I, (1a)

φ(x, 0) = φ0(x). (1b)

The problem is equipped with appropriate boundary conditions. We assume that the initial condition φ0 ∈ L∞(Ω )
has compact support in Ω . The smooth (nonlinear) flux denotes f = f(φ), the spatial coordinate is x ∈ Ω and time
is t ∈ I = (0, te) with te > 0. The problem (1) can produce discontinuities and shocks which motivate the usage
of weak solutions. A weak solution φ is a bounded function that satisfies∫

∞

0

∫
Ω

(φ∂tv + f · ∇v) dxdt +

∫
Ω

φ0(x)v(x, 0)dx = 0, (2)
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for all test functions v ∈ C∞
c (Ω × [0, ∞]) (i.e. v is smooth and has compact support). An important observation

is that physically and mathematically correct solutions are vanishing viscosity solutions. This is a key ingredient
in the concept of entropy solutions which are weak solutions that satisfy an additional inequality, denoted as the
entropy condition.

Definition 2.1. A solution of (1) is called an entropy solution if it satisfies, in the distributional sense, the entropy
condition:

∂tη(φ) + ∇ · q(φ) ≤ 0, (3)

for all convex entropy functions η. Condition (3) is rigorously understood as∫
∞

0

∫
Ω

(η(φ)∂tv + q(φ) · ∇v) dxdt ≥ 0, (4)

for all test functions v ∈ C∞
c (Ω × [0, ∞]), v ≥ 0.

Definition 2.2. A pair of functions (η, q) = (η(φ), q(φ)) is called an entropy–entropy flux pair for the conservation
law (1) if

• η is convex
• the compatibility condition is satisfied:

∂q
∂φ

=
∂η

∂φ

∂f
∂φ

. (5)

For smooth solutions the entropy condition is satisfied with equality, while the entropy dissipates at shock waves.
In absence of boundary conditions, integration of (3) over Ω leads to a dissipation of the overall entropy:

d
dt

∫
Ω

η(φ) dΩ ≤ 0 ⇒

∫
Ω

η(φ(x, t)) dΩ ≤

∫
Ω

η(φ0(x)) dΩ , for all t > 0. (6)

This a-priori estimate is the so-called entropy stability property and can be understood as a nonlinear L2-stability
for conservation laws when taking η(φ) = φ2/2.

Theorem 2.3. Entropy solutions are unique (in the scalar case).

Proof. See [52,53]. □

For more details about entropy solutions one can consult e.g. [52–55].

2.2. The variation entropy

The idea of the variation entropy (VE), developed in [51], is to consider the entropy of the conservation law of
∇φ instead of φ. We start off with the same conservation law:

find φ : Ω × I → R such that

∂tφ + ∇ · f = 0, (x, t) ∈ Ω × I, (7a)

φ(x, 0) = φ0(x). (7b)

in which the initial condition φ(x, 0) = φ0(x) ∈ L∞(Ω ) is assumed to have compact support. The flux f = f(φ) ∈

C(Ω ,R) is possibly nonlinear.

Remark 2.4. In this paper we restrict ourselves to the hyperbolic case, i.e. f = f(φ), unless explicitly stated. One
may also consider the parabolic case in which the flux also depends on ∇φ, i.e. f = f(φ, ∇φ). In that case one
needs to assume that the matrix ∂f/∂∇φ is symmetric negative definite.

Definition 2.5. The convex function η = η(∇φ) is said to be a variation entropy if η(0) = 0 and it satisfies the
variation entropy condition

∂tη + ∇ · q ≤ 0, (8)
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in weak sense where the flux q satisfies the compatibility condition

q =
∂f
∂φ

∇φ ·
∂η

∂∇φ
. (9)

Remark 2.6. For parabolic problems the variation entropy condition reads

∂tη + ∇ · q − D ≤ 0, (10)

in weak sense where the flux q and the non-conservative term D are respectively given by:

q =
∂f
∂φ

∇φ ·
∂η

∂∇φ
+

∂f
∂∇φ

∇η, (11a)

D =
(
HxφH∇φη

)
:

(
∂f

∂∇φ
Hxφ

)
. (11b)

Here Hxφ and H∇φη are the Hessians of φ and η.

Proposition 2.7. A variation entropy satisfies the homogeneity property:

v ·
∂η

∂v
= η, for all v ∈ Rd . (12)

Theorem 2.8. A function η is a variation entropy if and only if

• η is positive homogeneous function of degree 1:

η(γ v) = γ η(v) for all γ ≥ 0, v ∈ Rd . (13)

• η is sub-additive:

η(v1 + v2) ≤ η(v1) + η(v2) for all v1, v2 ∈ Rd . (14)

Proposition 2.9. A convex function η is a variation entropy if and only if it is given by

η = η(∇φ) = η̂(r, θ ) = F(θ )r, (15)

where F = F(θ ) is a scalar-valued function and where c ∈ R and r and θ are the spherical polar coordinates of
∇φ. The convexity condition is in the 2-dimensional case:

F(θ ) + F ′′(θ ) ≥ 0. (16)

Remark 2.10. The convexity demand in three dimensions is more involved. We refer to [51] for details.

Proposition 2.11. All semi-norms of ∇φ are variation entropies.

Corollary 2.12. A direct consequence of the homogeneity property (12) in Theorem 2.8 is that the variation entropy
flux is given by

q =
∂f
∂φ

η, (17)

and that the variation entropy condition is thus rigorously understood as∫
∞

0

∫
Rd

η

(
∂tv +

∂f
∂φ

· ∇v

)
dxdt ≥ 0, (18)

for all test functions v ∈ C∞
c (Ω × (0, ∞)), v ≥ 0.

In the case of parabolic conservation laws we can write

q =
∂f
∂φ

η +
∂f

∂∇φ
∇η. (19)
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Note that (17) is similar to the form of the compatibility condition of the classical entropy case when taking the
derivative with respect to ∇φ:

∂q
∂∇φ

=
∂f
∂φ

⊗
∂η

∂∇φ
. (20)

Examples of variation entropies are

η = η(∇φ) = ∥∇φ∥2, (21a)

η = η(∇φ) = c · ∇φ, for c ∈ Rd , (21b)

η = η(∇φ) = |||∇φ|||A :=
(
∇φT A∇φ

)1/2
, for positive semi-definite matrix A. (21c)

where ∥ · ∥2 is the standard 2-norm. Variation entropy (21b) is the only linear variation entropy.

Definition 2.13. A pair of functions (η, q) is called a variation entropy–variation entropy flux pair for the
conservation law (7) if

• η is a variation entropy,
• the flux q is given by (17).

Definition 2.14. We call φ = φ(x, t) a variation entropy solution of (7) if φ is a weak solution and φ satisfies (8)
in a weak sense for each variation entropy–variation entropy flux pair (η, q).

Physically relevant solutions are vanishing viscous solutions φϵ satisfying:

∂tφ
ϵ
+ ∇ · f(φϵ) = ϵ∆φϵ . (22)

Suppose φϵ is uniformly bounded in L∞(Ω ) and

φϵ
→ φ a.e. as ϵ → 0, (23)

then we say that φ is a physically relevant solution. In the following theorem we state that physically relevant
solutions are, apart from classical entropy solutions, also variation entropy solutions.

Theorem 2.15. The limit solution φ = limϵ→0 φϵ is a variation entropy solution.

Proof. See [51]. □

Analogously to the classical entropy case, in absence of boundary conditions we can integrate over the domain
Ω to get a dissipation of the overall variation entropy:

d
dt

∫
Ω

η(∇φ)dΩ ≤ 0 ⇒

∫
Ω

η(∇φ(x, t)) dΩ ≤

∫
Ω

η(∇φ0(x)) dΩ , for all t > 0. (24)

3. The VMS-variation entropy framework for discontinuity capturing methods

In this section we employ the variation entropy concepts within the variational multiscale framework to derive
a class of discontinuity capturing methods.

3.1. Starting point

We take the point of view that a good numerical method solves the conservation law problem:

find φ : Ω × I → R such that

∂tφ + ∇ · f = 0, (x, t) ∈ Ω × I, (25a)

φ(x, 0) = φ0(x), x ∈ Ω , (25b)
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with smooth flux f = f(φ) and at the same time does not harm the variation entropy condition

∂tη + ∇ · q ≤ 0, (26)

for variation entropy η. In the remainder of this section we derive a multiscale framework which endeavors this.

Remark 3.1. As stated in remark 2.2 we focus here on hyperbolic conservation laws. We want to emphasize that
changing to the parabolic case is a trivial execution. Furthermore, one can augment the conservation law with a
non-zero source term.

We start off with the regularized conservation law:

find φϵ
: Ω × I → R such that

∂tφ
ϵ
+ ∇ · f(φϵ) = ϵ∆φϵ, (x, t) ∈ Ω × I, (27a)

φϵ(x, 0) = φ0(x), x ∈ Ω , (27b)

with regularization parameter ϵ ≥ 0. The initial condition φ(x, 0) = φ0(x) ∈ L∞(Ω ) is assumed to have compact
support. Note that the limit solution is a variation entropy solution (Theorem 2.15). The weak form of this problem
is:

find φϵ
∈ W such that for all w ∈ W

(w, ∂tφ
ϵ)L2(Ω) − (f(φϵ), ∇w)L2(Ω) = −(φϵ, w)W . (28)

Here (·, ·)L2(Ω) is the standard L2-innerproduct and we have used the self-adjoint positive-definite linear viscosity
operator to define an innerproduct:

(u, v)W := (ϵ∇u, ∇v)L2(Ω) . (29)

A natural norm is the energy norm:

∥v∥
2
W :=

ϵ1/2
∇v
2

L2(Ω) . (30)

For more details about the construction of an energy norm we refer to [56].

3.2. Mesh representation and geometrical mapping

Let the parametric domain be Ω̂ := (−1, 1)d
⊂ Rd and let us denote the mesh in the parametric domain with

M. The elements Q of M have element size hQ = diag(Q) (diagonal length). We denote the physical domain
by Ω ⊂ Rd and the continuously differentiable geometrical map (with continuously differentiable inverse) by
F : Ω̂ → Ω . Each parametric element Q ∈ M maps into a physical element

ΩK = F(Q), (31)

which induces a physical mesh:

K = F(M) := {ΩK : ΩK = F(Q), Q ∈ M} . (32)

We denote the corresponding Jacobian by J = DF = ∂x/∂ξ , or in index notation Ji j = ∂xi/∂ξ j . We define the
second-rank element metric tensor as

G =
∂ξ

∂x

T ∂ξ

∂x
= J−T J−1, or in index notation G i j =

∂ξk

∂xi

∂ξk

∂x j
. (33)

The inverse is given by

G−1
=

∂x
∂ξ

∂x
∂ξ

T

= JJT , with the index notation G−1
i j =

∂xi

∂ξk

∂x j

∂ξk
. (34)
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Furthermore we define the physical mesh size hK as

h2
K =

h2
Q

d
∥J∥

2
F , (35)

where the subscript F refers to the Frobenius norm given by

∥J∥
2
F =

d∑
i, j=1

(
∂xi

∂ξ j

)2

= Tr(JJT ) = Tr(G−1), (36)

with Tr the trace operator. The Frobenius norm is a natural choice for mesh metrics since it is rotation-invariant and
appears in several well-known mesh quality measures. Another benefit is its lower computational costs compared to
the standard p-norm [57]. Furthermore, on a Cartesian mesh it reduces to the length of the diagonal of an element.
We use the notation ∇ξ to distinguish differentiation with respect to the reference coordinates ξ from the gradient
in physical coordinates ∇.

On uniform Cartesian meshes we use the notation ∂x/∂ξ := ∂x1/∂ξ1 = ∂x2/∂ξ2 = ∂x3/∂ξ3 > 0.

3.3. The multiscale split

The residual-based variational multiscale approach splits the solution into a large-scale and a small-scale
component. The large-scale component is solved numerically, whereas the small-scale contribution is treated in
an approximate sense. Assume that there exists an idempotent (and possibly nonlinear) projector Ph

: W → Wh .
The trial solution and weighting function spaces split as

W = PhW ⊕ (I − Ph)W = Wh
⊕ W ′, (37)

where Wh is the coarse-scale linear subspace and W ′ is its infinite-dimensional complement. This allows us to
decompose φϵ

∈ W and w ∈ W as:

φϵ
= (φϵ)

h
+ (φϵ)

′ and w = wh
+ w′, (38)

where (φϵ)h
= Phφϵ and wh

= Phw. Because Wh is a subset of W , (28) implies that for all wh
∈ Wh

(wh, ∂t ((φϵ)
h
+ (φϵ)

′))L2(Ω) − (f((φϵ)
h
+ (φϵ)

′), ∇wh)L2(Ω)

= −

(
(φϵ)

h
+ (φϵ)

′
, wh

)
W

, (39)

regardless of the possible nonlinearity of Ph . Take for the coarse-scale space Wh
⊂ H 1(Ω ). Sending ϵ → 0 in

(39) and noting that due to⏐⏐⏐((φϵ)
h
, wh

)
W

⏐⏐⏐ ≤ ∥ (φϵ)
h
∥W∥wh

∥W → 0 as ϵ → 0, (40)

we arrive at

(wh, ∂t (φh
+ φ′))L2(Ω) − (f(φh

+ φ′), ∇wh)L2(Ω) = −
(
φ′, wh)

W , (41)

for all wh
∈ Wh , with φh

:= limϵ→0 (φϵ)h and φ′
:= limϵ→0 (φϵ)′. Here we use an abuse of notation for the

term on the right-hand side which is the limit of the small-scale regularization term. In contrast to the large-scale
component, the small-scale term does not vanish in general due to the (possibly) unbounded gradient ∇φ′. Note
that this weak formulation is still exact. However, the infinite-dimensionality of W ′ does not allow for a discrete
implementation.

Let η be a positive-valued variation entropy function η = η(∇φ) : Rd
→ R+ (and thus nonlinear, eliminating the

linear variation entropy (21b)). We assume that η(∇w) ∈ L2(Ω ) ∀w ∈ W . The large-scale solution space associated
with η is defined as

Vh
:= η(∇Wh), (42)

with the elements

ηh
:= η(∇φh) ∈ Vh . (43)
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We define the small-scale variation entropy as η′
:= η(∇φ) −ηh . Let us denote the residual of the conservation law

and that of the variation entropy condition as:

RCLφ := ∂tφ + ∇ · f, (44)
RVEη := ∂tη + ∇ · q

=
∂η

∂∇φ
· ∇ (RCLφ) . (45)

3.4. A standard optimality projector

To establish scale separation the projector Ph needs to be selected. We construct the projector via the
minimization of a functional. The standard approach is the following. Consider the minimization problem:

find φh
∈ Wh such that:

L (φ − φh) = inf
θh∈Wh

L (φ − θh) (46)

where the quadratic functional is given by

L (φ) =
1
2∥φ∥

2
W . (47)

Lemma 3.2. The functional M : Wh
→ R given by

M (wh) :=
1
2∥φ − wh

∥
2
W (48)

is strictly convex.

Proof. This follows from the positive definiteness of the second derivative which equals

d2M (wh)(uh, vh) = (uh, vh)W , (49)

for uh, vh
∈ Wh . □

Theorem 3.3. Assuming Wh is closed, problem (46)–(47) has a unique solution.

Proof. This is a consequence of Lemma 3.2. See also [46]. □

The multiscale split projector (37) is now defined as:

Phφ = argmin
φh∈Wh

L (φ − φh) . (50)

We obtain a stationary point when the Gateaux derivative of the functional L in direction wh vanishes:

Ph
: φ ∈ W → φh

∈ Wh : find φh
∈ Wh such that for all wh

∈ Wh:

dL (φ − φh)(wh) = 0. (51)

Evaluating (51), the multiscale split projector takes the form:

Ph
: φ ∈ W → φh

∈ Wh : find φh
∈ Wh such that for all wh

∈ Wh:

(wh, φh
− φ)W = 0. (52)

Employing this relation in the VMS weak formulation, via the multiscale split (38), cancels the symmetric
contributions on the small-scales:

(wh, φ′)W = 0. (53)

As a result, the small-scale solution space is given by

W ′
=

{
φ′

∈ W : (wh, φ′)W = 0 for all wh
∈ Wh} . (54)
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Remark 3.4. The orthogonality (53) is linked to correct energy behavior for the convection–diffusion and the
incompressible Navier–Stokes equations. For details we refer to [40,58].

In the standard VMS framework the small-scales of the governing equations need to be modeled to arrive at a
numerical method. For general details about small-scale modeling we refer to [37,58,59]. We employ the standard
small-scale model for φ′:

φ̂′
= − τCLRCLφh, (55a)

∂t φ̂
′
= 0, (55b)

The scalar stabilization parameter τCL is a mesh-dependent approximation (based on inverse estimates, see e.g [60])
of the inverse of the differential operator. We use the hat-sign to indicate that (55) is a small-scale model instead
of it being the actual small-scales. In the following we use this approximation and ignore the hat-sign. The current
approach is known as the concept of static small-scales, due to assumption (55b). We note that, as an alternative,
one can employ dynamic small-scales. In that case a dynamic version of (55a) is used and the second modeling
assumption, relation (55b), is not made. This dynamic approach has some advantages [40,58,61]. Furthermore, we
remark that nonlinear contributions of the small-scales can be incorporated in the residual, see e.g. [37].

By employing the orthogonality (53) and the small-scale model (55) in an SUPG fashion in (39) we arrive at:

find φh
∈ Wh such that for all wh

∈ Wh

(wh, ∂tφ
h)L2(Ω) − (∇wh, f(φh))L2(Ω) +

∑
K

((τCL)K
∂f

∂φh
· ∇wh, RC L (φh))L2(ΩK ) = 0. (56)

The consequence is thus that both the large and small-scale components stemming from the regularized term vanish.
However, when incorporating the variation entropy condition in the projector the small-scale contribution does not
vanish. We present this approach in the next subsection.

3.5. A variation entropy optimality projector

Here we present a new optimality projector that uses the variation entropy condition. This naturally leads to a
discontinuity capturing term.

Remark 3.5. Here we choose to enforce the variation entropy condition in an indirect manner. As an alternative
one could use a more direct approach. We present the corresponding steps in Appendix. This alternative approach
does not provide a convex problem and as such uniqueness of the minimization problem cannot be guaranteed.

Consider the minimization problem:

find φh
∈ Wh such that:

L (φ − φh) = inf
θh∈Kh

L (φ − θh), (57)

where the constraint set reads:

Kh
:=
{
φh

∈ Wh
: (vh, η(∇φh) − η(∇φ))L2(Ω) ≤ 0 for all vh

∈ Vh} . (58)

Lemma 3.6. The solution space Kh is convex.
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Proof. This is direct consequence of the sub-additivity and the homogeneity of the variation entropy. Indeed let
0 ≤ ζ ≤ 1 and let φh

1 , φh
2 ∈ Kh then

(vh, η(ζ∇φh
1 + (1 − ζ )∇φh

2 ))L2(Ω) (59)

≤ (vh, η(ζ∇φh
1 ) + η((1 − ζ )∇φh

2 ))L2(Ω) (sub-additivity)

≤ (vh, ζη(∇φh
1 ) + (1 − ζ )η(∇φh

2 ))L2(Ω) (homogeneity)

≤ (vh, ζη(∇φ) + (1 − ζ )η(∇φ))L2(Ω) (φh
1 , φh

2 ∈ Kh)

= (vh, η(∇φ))L2(Ω), (60)

for all vh
∈ Vh . This implies ζφh

1 + (1 − ζ )φh
2 ∈ Kh . □

Theorem 3.7. Problem (57)–(58) has a unique solution.

Proof. The constraint set Kh is convex. Uniqueness follows from Lemma 3.2 in a similar fashion as in Theorem 3.3.
Details can be found in [46]. □

We proceed by opening the solution space. We penalize violating the constraint defined in (58). The constraint
problem (57)–(58) converts into the unconstrained minimization problem:

find φh
∈ Wh such that:

J (φ − φh, φ, φh) = inf
θh∈Wh

J (φ − θh, φ, θh), (61a)

where we have defined the functional J : W ′
× W × Wh

→ R as

J (w1, w2, w3) = L (w1) +
1
2
∥
√

µ {η(∇w2) − η(∇w3)}− ∥
2
L2(Ω). (61b)

The brackets {·}−, defined as {a}− = (a − |a|)/2, isolate the negative part of its argument. Here µ = µ(Ω ) ≥ 0 is
a parameter penalizing excess variation entropy of the coarse scale solution. The unit of µ is [µ] = [φ]2/([η]2T ).1

In the case that the unit of η is that of the solution over length, i.e. [η] = [φ]/L , µ has the unit of a viscosity:
[µ] = L2/T .

Proposition 3.8. The functional J = J (φ − φh, φ, φh) is bounded:

L (φ − φh) ≤ J (φ − φh, φ, φh) ≤ Jup(φ − φh) (62a)

where the upper bound is given by

Jup(φ − φh) = L (φ − φh) +
1
2
∥
√

µη(∇(φ − φh))∥2
L2(Ω). (62b)

Proof. This follows from the sub-additivity of η (14):

η(∇φ) − ηh
= η(∇φ) − η(∇φ + (∇φh

− ∇φ))

≥η(∇φ) − η(∇φ) − η(∇φh
− ∇φ)

= − η(∇φh
− ∇φ). □ (63)

Remark 3.9. In the case that the variation entropy equals η = ∥∇φ∥2, the upper bound converts into

Jup(φ − φh) =
1
2
∥φ − φh

∥
2
W +

1
2
∥µ1/2

∇(φ − φh)∥2
L2(Ω)

=
1
2
∥(ϵ + µ)1/2

∇(φ − φh)∥2
L2(Ω), (64)

which is the energy norm with viscosity ϵ + µ.

1 In this paper we use the notation [a] to denote the unit of quantity a. Furthermore, L denotes and length unit and T a time unit.
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We penalize violating the constraint defined in (58) by defining the projector Ph φ : W → Wh as:

Ph φ = argmin
φh∈Wh

J (φ − φh, φ, φh) . (65)

Remark 3.10. This can be viewed as a nonlinear Tikhonov-like regularization of orthogonal projection in W .
Alternatively, it can be seen as a penalty regularization of the inequality-constrained projection

Ph
c φ = arg

⎧⎪⎨⎪⎩
min

φh∈Wh
L (φ − φh)

subject to η
(
∇φh

)
≤ η(∇φ) a.e. in Ω

⎫⎪⎬⎪⎭ . (66)

The first-order optimality conditions for Ph follow from equating the Gateaux derivative in direction wh to zero.
By noting that

d η(∇φh)(∇wh) =
∂η

∂∇φh
· ∇wh, (67)

we obtain the problem:

Ph
: φ ∈ W → φh

∈ Wh : find φh
∈ Wh such that for all wh

∈ Wh:(
φ′, wh)

W = −

(
µ{η′

}−
∂ηh

∂∇φh
, ∇wh

)
L2(Ω)

. (68)

Using the homogeneity of ηh , i.e. relation (12), we can write:

∂η

∂∇φh
=

1
ηh

(
∂ηh

∂∇φh
⊗

∂ηh

∂∇φh

)
∇φh . (69)

Thus we arrive at(
φ′, wh)

W =
(
K∇φh, ∇wh)

L2(Ω) , (70)

in which the matrix K is given by:

K = ν

(
∂ηh

∂∇φh
⊗

∂ηh

∂∇φh

)
, (71a)

ν = − µ
{η′

}−

ηh
. (71b)

The parameter ν ≥ 0, referred to as variation entropy viscosity, scales with the relative error of the variation entropy
ηh and has unit [ν] = [µ] = [φ]2[η]−2T −1. Note that K has the unit of a viscosity:

[K] = [ν]
[η]2

[∇φ]2 =
L2

T
. (72)

The matrix (71a) acts as diffusion based on the variation entropy small-scales. Note that the diffusion operator of
the streamline upwind method [12] acts in the direction of the flow. For discontinuity capturing control of gradients
in the direction ∇φh is relevant [15]. The diffusion operator K acts in the direction ∂η/∂∇φh . This is the direction
in which the variation entropy changes and is thus a natural direction to add diffusion.

Lemma 3.11. The matrix K is symmetric positive semi-definite.

Proof. Symmetry is trivial and the positive semi-definiteness is a direct consequence of ν being positive. □

Remark 3.12. One could alternatively start from the constrained projector Ph
c and approximate the Lagrange

multiplier associated with the constraint by penalizing −µ{η′
}− to obtain the same result.
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At this point, no approximation has been made. We may substitute (70)–(71) into (41), illustrating how unresolved
viscous dissipation in the fine-scale solution is expressed in terms of variation entropy in the coarse-scale problem
when the coarse scales are defined by the nonlinear projector Ph . Notice that, when taking the limit ϵ → 0
the right-hand side of (71) does not vanish in this limit. This is consistent with the necessity of shock-capturing
operators in the inviscid limit. Further, the right-hand side of (71) is independent of the precise choice of viscous
operator, as one would hope in the case that an arbitrary regularization introduced for analysis purposes.

3.6. Small-scale model variation entropy

The current VMS-VE framework requires a model for the negative part of the small-scale variation entropy
{η′

}−. This opens the door to explore several small-scale models leading to different numerical methods. Note that
the small-scale variation entropy η′

= η(∇φ) − ηh is linked to the small-scale solution φ′ via:

{η′
}− = {η(∇φ) − ηh

}−

= {η(∇φh
+ ∇φ′) − ηh

}−

≤ {η(∇φ′)}−
= 0. (73)

Thus employing the model {η′
}− = {η(∇φ′)}− where the small-scale solution φ′ is determined by the standard

static model (55) causes the discontinuity capturing operator to vanish.
We propose a model for {η′

}− inspired by the variation entropy condition. Other possibilities may lead to an
improved method with practical benefits and/or theoretical advantages. Remark that in the case of smooth solutions
the variation entropy condition converts into an equality. Here we use the standard VMS method and write down
the Euler–Lagrange equations of small-scale equation. Following this reasoning we propose the model for {η′

}−:

{̂η′}−VE = −τVE
{
RVE

(
ηh)}

+
, (74)

where the hat-symbol indicates the modeling step. Here τVE ≥ 0 represents a time-scale associated with the variation
entropy. We note that τVE is an element-wise parameter: τVE = (τVE)K . We wish to emphasize that model (74) is
residual-based, both directly with residual RVE and with residual RCL, see (45).

3.7. Variation entropy viscosity

The variation entropy viscosity corresponding to the model (74) is:

νVE = µ τVE

{
RVE

(
ηh
)}

+

ηh
, (75)

where the subscript VE refers to the variation-entropy residual. Despite the fact that the variation entropy viscosities
are element-wise parameters, for the ease of notation we do not explicitly write a subscript K referring to element
K in this subsection. Note that the variation entropy viscosity (75) vanishes when the variation entropy condition
is satisfied.

The product µ τVE needs to be modeled. A natural approach would be to model the terms separately. In this
case, a standard VMS approach could be used to model the intrinsic time-scale associated with the variation entropy,
τVE, i.e. one could use a discrete approximation of the inverse of the corresponding differential operator.2 The term
µ is a penalty parameter that links the variation entropy to the regularization term. Recall that the unit of µ is
[φ]2[η]−2T −1. Since µ is associated with the variation entropy, a natural choice for the time-scale in µ is τ−1

VE .
Following this approach, the model for τVE would cancel in the product µ τVE. This suggests the alternative to
model the product µ τVE as one quantity instead of modeling the separate terms. This is how we proceed. As µ

connects the variation entropy to the regularization term associated with the conservation law and this connection
is governed by the operator ∂η/∂∇φ · ∇ (see (45)), we employ this operator to determine the product µ τVE. By
applying the chain rule this operator may be written as:

2 In the linear convection–diffusion case one could use τVE = τCL as the differential operators equal (see (105) in Section 3.10).
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∂ηh

∂∇φh
· ∇ =

(
∂ξ

∂x
∂ηh

∂∇φh

)
∂

∂ξ

=

(
J−1 ∂ηh

∂∇φh

)
∂

∂ξ
. (76)

Note that the unit of the product µ τVE is the inverse square of that of the operator ∂η/∂∇φ · ∇ (the units are
[φ]2[η]−2 and [φ]−1[η] respectively). We propose to use the discrete approximation of the inverse square of the
operator ∂η/∂∇φ · ∇ as a model for µ τVE. We take:

µ τVE = C h2
Q |||

∂ηh

∂∇φh
|||

−2

G
, (77)

where C is some unitless constant. Remark that a similar approximation technique also employing reference
coordinates has been used to derive the stabilization parameter τCL, see e.g. [37]. The variation entropy viscosity
thus converts into

νVE = C h2
Q |||

∂ηh

∂∇φh
|||

−2

G

{
RVE

(
ηh
)}

+

ηh
. (78)

Remark 3.13. Viscosity coefficients are usually determined via introducing a shock-capturing quantity and a length-
scale. In the small-scale model (74) the quantity

{
RVE

(
ηh
)}

+
/ηh serves as shock-capturing quantity (and has unit

T −1).

The next step is to select a variation entropy. We propose two options. The simplest choice for the variation
entropy is to take ηh

= ∥∇φh
∥2. Remark that this variation entropy is objective, see [51]. The corresponding

variation entropy viscosity takes the form:

ηh
= ∥∇φh

∥2 ⇒ νVE = C h2
Q

(
∥∇φh

∥2

|||∇φh |||G

) {
RVE

(
∥∇φh

∥2
)}

+

|||∇φh |||G
. (79)

Another option is to select η = |||∇φh
|||A which is defined for a positive semi-definite symmetric matrix as

|||∇φ|||
2
A := ∇φT A∇φ, see (21c). This is indeed a variation entropy and is rotation invariant whenever

A(Rx) = RA(x)RT (80)

for rotation matrix R, see [51]. We suggest to take A = G−1, i.e. ηh
= |||∇φh

|||G−1 = ∥∇ξφ
h
∥2. Trivially

G−1
= G−1(x) satisfies (80). The variation entropy viscosity corresponding to this choice is:

ηh
= ∥∇ξφ

h
∥2 ⇒ νVE = C h2

Q

{
RVE

(
∥∇ξφ

h
∥2
)}

+

∥∇ξφh∥2
. (81)

Proposition 3.14. On a uniform Cartesian mesh there holds on element K :

G−1
K = JK JT

K =

(
∂x
∂ξ

)2

IK , (82a)

h2
K =

h2
Q

d
∥JK ∥

2
F = h2

Q

(
∂x
∂ξ

)2

, (82b)

∥∇ξφ
h
∥2 = |||∇φh

|||G−1
K

= ∥∇φh
∥2

∂x
∂ξ

, (82c)

|||∇φh
|||G = ∥∇φh

∥2
∂ξ

∂x
. (82d)
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Lemma 3.15. On uniform Cartesian quadratic/cubic meshes we have

νVE (∥∇φh
∥2) = C h2

K

{
RVE

(
∥∇φh

∥2
)}

+

∥∇φh∥2
, (83a)

νVE (∥∇ξφ
h
∥2) = C h2

Q

{
RVE

(
∥∇φh

∥2
)}

+

∥∇φh∥2
, (83b)

Proof. Using (82b) and (82d) the first identity is obtained:

νVE(∥∇φh
∥2) = C h2

Q

(
∥∇φh

∥2

|||∇φh |||G

)2 {RVE
(
∥∇φh

∥2
)}

+∇φh


2

= C h2
Q

(
∂x
∂ξ

)2
{
RVE

(
∥∇φh

∥2
)}

+

∥∇φh∥2

= C h2
K

{
RVE

(
∥∇φh

∥2
)}

+

∥∇φh∥2
, (84)

The second expression follows via (45), (82a) and (82c):

νVE(∥∇ξφ
h
∥2) = C h2

Q

{
RVE

(
∥∇ξφ

h
∥2
)}

+

∥∇ξφh∥2

= C h2
Q

{
G−1

∇φh

∥∇ξφh∥2
· ∇(RCL

(
φh
)
)
}

+

∥∇φh∥2∂x/∂ξ

= C h2
Q

{
(∂x/∂ξ)2

∇φh

∥∇φh∥2∂x/∂ξ
· ∇(RCL

(
φh
)
)

}
+

∥∇φh∥2∂x/∂ξ

= C h2
Q

{
RVE

(
∥∇φh

∥2
)}

+

∥∇φh∥2
. □ (85)

Corollary 3.16. On uniform Cartesian quadratic/cubic meshes we have the identity:

νVE (∥∇φh
∥2) =

(
∂x
∂ξ

)2

νVE (∥∇ξφ
h
∥2). (86)

To avoid singularities we introduce a regularized variation entropy ηh
ε , see also [51]. Let us define the

regularization of variation entropy |||∇φh
|||A for regularization parameter 0 < ε ≪ 1 via:(

ηh
ε

)2
= |||∇φh

|||
2
ε,A := |||∇φh

|||
2
A + ε2 Tr(A)

d
. (87)

Furthermore we also define:

∥∇φ∥
2
ε,2 := ∥∇φ∥

2
2 + ε2. (88)

The resulting expressions for the variation entropies chosen above are

ηh
= ∥∇φh

∥2 ⇒
(
ηh

ε

)2
= ∥∇φh

∥
2
ε,2 , (89a)

ηh
= ∥∇ξφ

h
∥2 ⇒

(
ηh

ε

)2
= |||∇φh

|||
2
ε,G−1 = ∥∇ξφ

h
∥

2
2 + ε2

∥J∥
2
F/d =: ∥∇ξφ

h
∥

2
εξ ,2 , (89b)

where the regularization parameters are related as

ε2
ξ = ε2

∥J∥
2
F/d. (90)
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We apply the regularization both to the shock-capturing quantities and the prefactors yielding the following
regularized variation entropy viscosities:

ηh
ε = ∥∇φh

∥ε,2 ⇒ νVE = C h2
Q

(
∥∇φh

∥ε,2

|||∇φh |||ε,G

) {
RVE

(
∥∇φh

∥ε,2
)}

+

∥∇φh∥ε,G
, (91a)

ηh
ε = ∥∇ξφ

h
∥

2
εξ ,2 ⇒ νVE = C h2

Q

{
RVE

(
∥∇ξφ

h
∥εξ ,2

)}
+

∥∇ξφh∥εξ ,2
. (91b)

Remark 3.17. Applying solely regularization in (78) to derive regularized versions of the expressions (79) and
(81) does not exclude singularities.

The specific regularization choice ensures that Corollary 3.16 also holds in the regularized case.

Corollary 3.18. On uniform Cartesian quadratic/cubic meshes we have the identity:

νVE (∥∇φh
∥ε,2) =

(
∂x
∂ξ

)2

νVE (∥∇ξφ
h
∥εξ ,2), (92)

where the terms in the brackets after νVE refer to (91a) and (91b) respectively.

3.8. Diffusion matrices

Let us first consider the case ηh
ε = ∥∇φh

∥ε,2. We use the non-regularized ηh
= ∥∇φh

∥2 to derive the diffusion
matrix and find via (71):

KK = (νVE)K
∇φh

∥∇φh∥2
⊗

∇φh

∥∇φh∥2
(93)

with variation entropy (νVE)K given in (91a). Using the relation (70) we see that in this case the matrix KK results
in isotropic diffusion:(

∇wh, KK ∇φh)
L2(ΩK ) =

(
∇wh, (νVE)K ∇φh)

L2(ΩK ) . (94)

In the other situation, i.e. ηh
ε = ∥∇ξφ

h
∥εξ ,2, using also the corresponding non-regularized variation entropy yields

for the diffusion matrix:

KK = (νVE)K
G−1

∇φh

∥∇ξφh∥2
⊗

G−1
∇φh

∥∇ξφh∥2
. (95)

with variation entropy (νVE)K given in (91b). The resulting diffusion contribution in the weak form is based on
local gradients:(

∇wh, KK ∇φh)
L2(ΩK ) =

(
∇wh, (νVE)K

J∇ξφ
h

∥∇ξφh∥2
∥∇ξφ

h
∥2

)
L2(ΩK )

=
(
∇ξw

h, (νVE)K ∇ξφ
h)

L2(ΩK ) . (96)

Remark 3.19. We note that Guermond and Nazarov [62] use reference coordinates to enforce the maximum
principle. They observe that local reference coordinates can provide more control over the gradients.

Theorem 3.20. On uniform Cartesian quadratic/cubic meshes the choices η = ∥∇φ∥ε,2 and η = ∥∇ξφ∥εξ ,2
coincide.

Proof. This is a direct consequence of Corollary 3.18:(
∇ξw

h, (νVE)K (∥∇ξφ
h
∥εξ ,2) ∇ξφ

h)
L2(ΩK )

=

(
∇wh, (νVE)K (∥∇ξφ

h
∥εξ ,2)

(
∂x
∂ξ

)2

∇φh

)
L2(ΩK )

=
(
∇wh, (νVE)K (∥∇φh

∥ε,2) ∇φh)
L2(ΩK ) . □ (97)
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3.9. Complete semi-discrete formulations

By substituting the diffusion terms (94) and (96) with corresponding variation entropy viscosities (91) into (70)
and using the SUPG model of (56) in (39), we arrive at the following variational formulation:

find φh
∈ Wh such that for all wh

∈ Wh:(
wh, ∂tφ

h)
L2(Ω) −

(
∇wh, f

(
φh))

L2(Ω)  
Galerkin

+

∑
K

(
(τCL)K

∂f
∂φh

· ∇wh, RC L (φh)
)

L2(ΩK )  
Stabilization

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
K

(∇wh, (νVE)K ∇φh)L2(ΩK )  
Discontinuity capturing
in physical coordinates

if ηh
ε = ∥∇φh

∥ε,2

∑
K

(∇ξw
h, (νVE)K ∇ξφ

h)L2(ΩK )  
Discontinuity capturing
in reference coordinates

if ηh
ε = ∥∇ξφ

h
∥εξ ,2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 (98a)

where the variation entropy viscosity is:

νVE =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C h2

Q

(
∥∇φh

∥ε,2

|||∇φh |||ε,G

) {
RVE

(
∥∇φh

∥ε,2
)}

+

∥∇φh∥ε,G
if ηh

ε = ∥∇φh
∥ε,2

C h2
Q

{
RVE

(
∥∇ξφ

h
∥εξ ,2

)}
+

∥∇ξφh∥εξ ,2
if ηh

ε = ∥∇ξφ
h
∥εξ ,2.

(98b)

We conclude that the variation entropy optimality projector with the proper modeling choices naturally augments
the VMS method with a discontinuity capturing term:

VMS + VE⇝ DC (99)

This proves the conjecture of Bazilevs et al. [24]:

‘the multiscale frame-work with a proper set of optimality conditions is the right underlying theoretical structure
that may more naturally lead to discontinuity capturing formulations.’

Remark 3.21. It is possible to set a maximum to the introduced viscosity, see e.g. [48]. Based on first-order
upwind techniques (which yields in some cases a monotone method) a natural choice would be to take the maximum
viscosity as:

νmax = CmaxhK

 ∂f
∂φ


2
, (100)

where Cmax is some constant.

3.10. The convection–diffusion problem

In the preceding part of this section we have solely focused on the hyperbolic case. As claimed, the parabolic
case is a straightforward extension, which we demonstrate here using the convection–diffusion model problem.

Let φ0 = φ0(x), divergence-free velocity field a = a(φ) and diffusivity κ ≥ 0 be given. The problem reads:
find φ = φ(x, t) : Ω × R+

→ R such that:

∂tφ + a · ∇φ − κ∆φ = 0 in Ω × I, (101a)

φ = g on ∂Ω , (101b)

φ(x, 0) = φ0(x) in Ω . (101c)



18 M.F.P. ten Eikelder, Y. Bazilevs and I. Akkerman / Computer Methods in Applied Mechanics and Engineering 359 (2020) 112664

The standard weak formulation is:

find φ ∈ H 1
g (Ω ) such that for all w ∈ H 1

0 (Ω ):

(w, ∂tφ + a · ∇φ)L2(Ω) + (∇w, κ∇φ)L2(Ω) = 0 in Ω × I, (102a)

φ(x, 0) = φ0(x) in Ω , (102b)

where we use the standard notation for the function spaces with H 1
g (Ω ) :=

{
w ∈ H 1(Ω ) : w = g on ∂Ω

}
. We note

that the this problem suits the abstract framework with function spaces W = H 1
g (Ω ),W∗

= H−1(Ω ). The linear
operator L : H 1

g (Ω ) → H−1(Ω ) is defined as

H−1(Ω)⟨Lφ, w⟩H1
0 (Ω) = (w, ∂tφ)L2(Ω) − (∇w, aφ − κ∇φ)L2(Ω). (103)

Applying the methodology results in the following method:

find φh
∈ Wh

g such that for all wh
∈ Wh

0 :

(wh, ∂tφ
h
+ a · ∇φh)L2(Ω) + (∇wh, κ∇φh)L2(Ω)  

Galerkin contribution

+

∑
K

((τCL)K a · ∇wh, RCLφh)L2(ΩK )  
VMS stabilization

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
K

(∇wh, νK ∇φh)L2(ΩK )  
Discontinuity capturing
in physical coordinates

if ηh
ε = ∥∇φh

∥ε,2

∑
K

(∇ξw
h, νK ∇ξφ

h)L2(ΩK )  
Discontinuity capturing
in reference coordinates

if ηh
ε = ∥∇ξφ

h
∥εξ ,2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0 (104a)

where the variation entropy viscosity is:

νVE =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C h2

Q

(
∥∇φh

∥ε,2

|||∇φh |||ε,G

) {L (∥∇φh
∥ε,2

)}
+

|||∇φh |||ε,G
if ηh

ε = ∥∇φh
∥ε,2

C h2
Q

{
L
(
∥∇ξφ

h
∥εξ ,2

)}
+

∥∇ξφh∥εξ ,2
if ηh

ε = ∥∇ξφ
h
∥εξ ,2.

(104b)

We wish to emphasize that convection–diffusion and variation entropy operators coincide:

RCLφh
= Lφh, (105a)

RVEηh
= Lηh . (105b)

The element-wise stabilization parameter (τCL)K is defined as in [58].

3.11. Connection to the YZβ method

In order to establish the connection to the YZβ method [24] we present an alternative small-scale model. Instead
of using the model (74), one can use an approximation. Using the definition (45) we may write:

{̂η′}−VE = −τVE

{
∂ηh

∂∇φh
· ∇(RCL(φh))

}
+

. (106)

Again using (76) we now approximate (106) as a residual-based model via:

{̂η′}−CL = − τVE h−1
Q

J−1 ∂ηh

∂∇φh


2

|RCL
(
φh)

|

= − τVE h−1
Q |||

∂ηh

∂∇φh
|||

G
|RCL

(
φh)

|, (107)
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Using the model (77) for µτVE, the corresponding variation entropy viscosity takes the form:

νCL = µ τVE h−1
Q |||

∂ηh

∂∇φh
|||

G

|RCL
(
φh
)
|

ηh

= C hQ |||
∂ηh

∂∇φh
|||

−1

G

|RCL
(
φh
)
|

ηh
, (108)

where the subscript refers to the conservation law residual. In this case the variation entropy viscosity (108) scales
with the residual of the conservation law but generally does not vanish when the variation entropy condition is
satisfied.

Using the same large-scale variation entropies, i.e. ηh
= ∥∇φh

∥2 and ηh
= ∥∇ξφ

h
∥2, we get the expressions:

ηh
= ∥∇φh

∥2 ⇒ νCL = C hQ
|RCL

(
φh
)
|

|||∇φh |||G
, (109a)

ηh
= ∥∇ξφ

h
∥2 ⇒ νCL = C hQ

|RCL
(
φh
)
|

∥∇ξφh∥2
. (109b)

Lemma 3.22. On uniform Cartesian quadratic/cubic meshes we have

νCL (∥∇φh
∥2) = C hK

|RCL
(
φh
)
|

∥∇φh∥2
, (110a)

νCL (∥∇ξφ
h
∥2) = C hQ

(
∂x
∂ξ

)−1
|RCL

(
φh
)
|

∥∇φh∥2
. (110b)

Proof. The proof is similar to that of Lemma 3.15 and uses (82b)–(82d). □

Corollary 3.23. On uniform Cartesian quadratic/cubic meshes we have the identity:

νCL (∥∇φh
∥2) =

(
∂x
∂ξ

)2

νCL (∥∇ξφ
h
∥2). (111)

The regularized versions of the variation entropy viscosities are:

ηh
ε = ∥∇φh

∥ε,2 ⇒ νCL = C hQ
|RCL

(
φh
)
|

|||∇φh |||ε,G
, (112a)

ηh
ε = ∥∇ξφ

h
∥εξ ,2 ⇒ νCL = C hQ

|RCL
(
φh
)
|

∥∇ξφh∥εξ ,2
. (112b)

Corollary 3.24. On uniform Cartesian quadratic/cubic meshes we have the identity:

νCL (∥∇φh
∥ε,2) =

(
∂x
∂ξ

)2

νCL (∥∇ξφ
h
∥εξ ,2). (113)

Theorem 3.25. On uniform Cartesian quadratic/cubic meshes the choices η = ∥∇φ∥ε,2 and η = ∥∇ξφ∥εξ ,2

coincide.

Substitution yields weak formulation (98) where the variation entropy viscosity are now given by (112). As
variation entropy we take ηh

= ∥∇φh
∥2 which yields:(

∇wh, KK ∇φh)
L2(ΩK ) =

(
∇wh, C hQ

|RCL
(
φh
)
|

|||∇φh |||ε,G
∇φh

)
L2(ΩK )

. (114)
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This is the (regularized version of the) discontinuity capturing term used by Akkerman et al. [44] for the level-set
convection equation. On Cartesian uniform meshes it reduces to(

∇wh, KK ∇φh)
L2(ΩK ) =

(
∇wh, C hK

|RCL
(
φh
)
|∇φh


ε,2

∇φh

)
L2(ΩK )

. (115)

For convection–diffusion problems this coincides with the YZβ discontinuity capturing operator [24] with parameter
β = 1. This term is used for non-uniform meshes as well.

Remark 3.26. Remark that YZβ discontinuity capturing and the beyond SUPG discontinuity capturing are nearly
identical in a one dimensional pure convection case with stabilization parameter h/a.

Remark 3.27. The discontinuity capturing operator YZβ with parameter β = 2, in contrast to β = 1, does not fit
in the presented framework. The fact that the choice β = 1 is preferred over β = 2, see [24], confirms the viability
of the presented theory.

4. Numerical comparison

In this section we evaluate the numerical methods on benchmark problems. All the computations are performed
with TIGAR [63]. We employ C1-continuous quadratic NURBS and use the generalized-α time-integrator with the
parameter ρ∞ = 1.0. Note that this is the only time-integrator within the generalized-α family linked to correct
energy behavior, see e.g. [58]. The regularization parameter is taken as ε2

= 10−2.
We show the results of using

1. the well-known SUPG method.
2. the YZβ method with β = 1. The connection of this method with the developed framework is presented in

Section 3.11.
3. the new method which is summarized in Section 3.9.

All the computations are performed on Cartesian meshes. Here the choices η = ∥∇φ∥2 and η = ∥∇ξφ∥2 coincide
(Theorem 3.20). Non-Cartesian computations may be subject of another work.

First we evaluate the convergence behavior of the new methods on a smooth pure advection problem. Then we
evaluate the methods on two nonlinear benchmark problems: (i) the Buckley–Leverett equation with gravity and
(ii) the KPP rotating wave problem. Both tests involve non-convex fluxes and are challenging since the corresponding
solutions have a two-dimensional composite wave-structure. These problems have been employed in other works
concerning discontinuity capturing mechanisms, see e.g. [24,48,64–66]. We refer the reader for a comparison of
the results to those works.

4.1. Convergence on smooth solutions

In this first numerical experiment we consider a smooth profile to test the convergence of the methods. The
problem reads, see also Fig. 2, as:

∂tφ + ∇ · f = 0, (116a)

φ(x, 0) =

⎧⎨⎩ exp
(

−
1

1 − r2

)
if r < 1.0,

0.0 otherwise,
(116b)

f(φ) = aφ. (116c)

with radius r =
√

x2 + y2.
The convection velocity field is constant with value a = (0.1, 0.15). The time-step size is chosen as ∆t = 4hK

and we take C = 0.5. Fig. 3 shows second-order/third-order convergence in the L2-norm for each of the three
methods which for finer meshes yields second-order convergence due to the choice of the time-integrator.
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Fig. 2. Smooth solution problem with quadratic NURBS. The final solution at t = 1.0.

Fig. 3. L2 convergence of the smooth solution problem with quadratic NURBS.

4.2. Buckley–Leverett with gravity

The gravitational Buckley–Leverett problem with a Riemann initial configuration reads:

find φ = φ(x, t) : Ω × I → R such that:

∂tφ + ∇ · f = 0, (117a)

φ(x, 0) =

{
1.0 if x2

+ y2
≤ 0.5,

0.0 otherwise, (117b)

f(φ) =

(
φ2

φ2 + (1 − φ)2 ,
φ2(1 − 5(1 − φ)2)

φ2 + (1 − φ)2

)
. (117c)

The Buckley–Leverett problem emerges from a two-phase immiscible incompressible fluid problem. It represents
a saturation equation in which gravitational effects are incorporated. This results in different fluxes in both spatial
directions. The problem has also been considered in [48,66,67]. The solution is advanced in time until t = 0.5.

All computations are performed on a 100 × 100 mesh with time-step size ∆t = 0.01. We show in Figs. 4–6 the
solution profiles at final time t = 0.5. The gray scale of the viscosity magnitude is per Figure chosen such that the
location of the diffusion becomes most apparent. The results of the SUPG method contain excessive oscillations.
The discontinuity capturing viscosity based on the variation entropy condition focuses on the sharp layer, whereas
basing it on the residual of the conservation law spreads it out.
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Fig. 4. Buckley–Leverett problem, the solution at final time t = 0.5 using the SUPG method.

Fig. 5. Buckley–Leverett problem, the solution at final time t = 0.5 using the YZβ method with constant C = 0.25.

Fig. 6. Buckley–Leverett problem, the solution at final time t = 0.5 using the VE method with constant C = 0.25.
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4.3. KPP rotating wave

The KPP rotating wave problem is:

find φ = φ(x, t) : Ω × I → R such that:

∂tφ + ∇ · f = 0, (118a)

φ(x, 0) =

{
3.5π if x2

+ y2
≤ 1,

0.25π otherwise, (118b)

f(φ) = (sin φ, cos φ) . (118c)

The test case was proposed in [65] and is named after the authors Kurganov, Petrova, and Popov. Several
reconstruction schemes, e.g. central-upwind schemes as WENO5, Minmod 2 and SuperBee, are not successful
for this test.

All computations are performed on a 100×100 mesh with time-step size ∆t = 0.01. Figs. 7–9 show the solution
profiles of the various methods at final time t = 1.

Fig. 7. KPP rotating wave problem, the solution at final time t = 1.0 using the SUPG method.

The results of the SUPG method display sharp layers with excessive oscillations. The solution quality improves
greatly when using any of the other methods. Again, the discontinuity capturing viscosity is more localized near
the sharp layers when it is based on the variation entropy condition (displayed in Fig. 9) than on the residual of the
conservation law (see Fig. 8). We see at some locations a viscosity value that is higher than required. In Fig. 10
we show the results of using a maximum for the viscosity via Eq. (100) with Cmax = 1.0. The gray scale of the
viscosity magnitude of Figs. 9 and 10 is the same to highlight the effect of using a maximum viscosity. The overly
diffusive regions are now removed and the resulting profile has minimal smearing and the spurious oscillations are
virtually absent.

Remark 4.1. In this testcase it is apparent that the viscosity of the new method is active in regions where
variation entropy is created. Gibbs oscillations appear right next to the discontinuity and this is where the viscosity
acts. Note that the viscosity is absent at the location of the shockwave itself. This is in contrast to the entropy
viscosity method [48] in which the viscosity focuses on the shockwave itself rather than on the oscillations next
to it.
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Fig. 8. KPP rotating wave problem, the solution at final time t = 1.0 using the YZβ method with constant C = 0.25.

Fig. 9. KPP rotating wave problem, the solution at final time t = 1.0 using the VE method with constant C = 0.25.

Fig. 10. KPP rotating wave problem, the solution at final time t = 1.0 using the VE method with constant C = 0.25 and using the maximum
viscosity (100).
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5. Conclusions

In this paper we have presented a general framework for discontinuity capturing mechanisms. The framework
does not employ ad hoc devices which is, to the best knowledge of the authors, in contrast to previous discontinuity
capturing methods. The developed theory contains two key ingredients, namely variation entropy theory and
variational multiscale analysis. Variation entropy provides us the location of the viscosity and VMS models this
viscosity via the missing scales. Merging the variation entropy concept into the variational multiscale method
naturally equips the variational multiscale method with a discontinuity capturing term.

The discontinuity capturing viscosity is based on the variation entropy condition. In smooth regions the variation
entropy relation is governed with an equality, and this is where the discontinuity capturing term vanishes. Near sharp
layers, however, the variation entropy relation becomes an inequality. Here the discontinuity capturing term switches
on; dissipation based on the variation entropy production is added to the formulation.

Many spurious oscillation diminishing methods are isotropic of nature or add diffusion in the crosswind direction.
The discontinuity capturing viscosity acts in the direction identified by the change of the variation entropy. We
believe that this is a natural direction, since this is where sharp layers are expected. In particular cases the viscosity
reduces to an isotropic one.

The steps of the framework to arrive at a discontinuity capturing term can be summarized as follows:

1. Regularize the conservation law.
2. Perform a multiscale split and subsequently take the limit of regularization parameter to zero.
3. Select a projector based on the variation entropy condition.
4. Select a small-scale variation entropy model.
5. Compute the variation entropy viscosity.
6. Select a large-scale variation entropy.

We have tested the new discontinuity capturing method on nonlinear benchmark problems. The computations are
performed with quadratic NURBS. The numerical results are virtually oscillation-free and have minimal smearing.
Compared to the well-known YZβ method [24], the diffusion of the new discontinuity method is more localized
near sharp layers. These are the locations where variation entropy can be created. We emphasize that the diffusion
should not be added at the shock but right next to it.

This paper sheds light on the different concepts of entropy solutions, the total variation diminishing property
and their relation to discontinuity capturing mechanisms. In particular, it establishes a connection between total
variation/variation entropy and discontinuity capturing.

The current framework provides some insight into discontinuity capturing techniques, however we certainly do
not claim that it is sufficient in this context. There are several openings.

• The first concerns the choice of the variation entropy. Numerical results indicate that taking the 2-norm of the
gradient leads to good behavior. Improvement might be achieved with another choice of the variation entropy.

• Another point that deserves interest is the small-scale variation entropy model. We have taken the simplest
options and perhaps at this point progress can be made.

• Furthermore, a numerical investigation of the performance of the new method on curved/non-Cartesian meshes
could be done.

Summarizing, this paper proposes a novel paradigm for the construction of discontinuity capturing operators. We
think that the framework has a more firm mathematical foundation than previously proposed methods. The reason
is that it naturally emerges from the conservation law and does not contain ad hoc devices. This, together with
the good numerical results illustrate the viability of the framework. The basic questions of discontinuity capturing
operators, i.e. (i) where to add diffusion?, and (ii) how much diffusion should be added? are answered. The results
of this paper indicate that diffusion should be added there where variation entropy is being produced with an amount
that scales with the variation entropy production.

We close this paper with the following note. The variational multiscale method has proven to be a powerful
tool for the simulation of turbulent flows, as displayed in the seminal work [37]. In the current paper we have
demonstrated that, in addition to this,

the variational multiscale method is suitable to deal with sharp layers/discontinuities.

The reason for this is simple: both turbulence and shock wave problems contain features that do not ‘fit’ on a
coarse mesh; the variational multiscale framework incorporates these features into the numerical method.
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Appendix. An alternative optimality projector

Here we present an alternative projector that directly penalizes violation of the variation entropy condition.
Consider the minimization problem:

find φh
∈ Wh such that:

L (φ − φh) = inf
θh∈Kh

L (φ − θh), (A.1)

where the constraint set reads:

Kh
:=
{
φh

∈ Wh
: (vh, RVEηh)L2(Ω) ≤ 0 for all vh

∈ Vh} . (A.2)

We proceed by opening the solution space with a penalty approach. We define the projector by

Ph φ = argmin
φh∈Wh

{
1
2

φ − φh
2
W +

1
2

√µτVE{RVEηh
}+

2
L2(Ω)

}
, (A.3)

where µ and τVE play the same role as before. Just like for the projector of Section 3.5, when the variation entropy
condition is not harmed the first-order optimality conditions reduce to an H 1(Ω ) orthogonality. This optimality
projector Ph implies:

find φh
∈ Wh such that, for all wh

∈ Wh(
φ′, wh)

W =
(
µτ 2

VE{RVEηh
}+, dRVEηh(∇φh)(∇wh)

)
L2(Ω) . (A.4)

Employing the definition of RVE and the chain rule we arrive at:(
φ′, wh)

W =

(
µτ 2

VE{RVEηh
}+

∂ηh

∂∇φh
, d (∇RCL) (φh)(wh)

)
L2(Ω)

+
(
µτ 2

VE{RVEηh
}+, H∇φh η

h
∇wh, ∇RCLφh)

L2(Ω) . (A.5)

Using the homogeneity property and interchanging differential operators we may write:(
φ′, wh)

W =
(
K∇φh, τVE∇

(
dRCL(φh)(wh)

))
L2(Ω) +

(
K̄∇wh, τVE∇RCLφh)

L2(Ω) . (A.6)

where τVE denotes the time-scale linked to the variation entropy and where the matrices are given by:

K = νVE
∂ηh

∂∇φh
⊗

∂ηh

∂∇φh
, (A.7a)

K̄ = νVEηhH∇φηh, (A.7b)

νVE = µτVE
{RVEηh

}+

ηh
. (A.7c)

We arrive at the same expression for νVE, we may employ the model (77). At this point it is unclear how to arrive
at a numerical method from the small-scale model. There are several options however these include unwanted
approximations and/or require neglecting some terms. We do not proceed with this projector however we present
some discussion on the diffusion matrices below.

Proposition A.1. The matrices K and K̄ are symmetric positive semi-definite.

Proof. Symmetry is trivial and the positive semi-definiteness of is a direct consequence of νVE being positive and
the convexity of ηh (for K̄). □
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Note that both K and K̄ have the unit of a viscosity and both are based on the variation entropy residual. The
matrix K is the same as found before and acts in the direction is represented by ∂η/∂∇φh . Below we analyze the
matrix K̄.

Let u∥ denote the projection of u onto ∂η/∂∇φh :

u∥ :=

ˆ∂ηh

∂∇φh
⊗

ˆ∂ηh

∂∇φh
u (A.8)

where the hat-symbol indicates scaling to unit size: v̂ = v/∥v∥2. Note that we have the identity

u∥ ·
∂ηh

∂∇φh
= u ·

∂ηh

∂∇φh
, (A.9)

and that the vector

u⊥ := u − u∥ =

(
I −

ˆ∂ηh

∂∇φh
⊗

ˆ∂ηh

∂∇φh

)
u (A.10)

is perpendicular to u. Whereas the matrix K provides control over gradient in the direction ∂η/∂∇φh (represented
by u∥), the matrix K̄ can provide control of gradients in the direction orthogonal to that (represented by u⊥). In
this case K̄u should be proportional to u⊥. This is only the case if η = ∥∇φh

∥2, as stated in the next proposition.

Proposition A.2. The matrix K̄ acts in the direction orthogonal to ∂η/∂∇φh if and only if η = ∥∇φh
∥2 (up to

multiplication with a constant).

Proof. Up to scaling by a constant, we need to find ηh such that:

K̄u = νVEu⊥ (A.11)

for all vectors u. Substitution of (A.7b) and (A.10) gives:

νVEηhH∇φh ηu = νVE

(
I −

ˆ∂ηh

∂∇φh
⊗

ˆ∂ηh

∂∇φh

)
u. (A.12)

Taking u = ∇φh provides

ηhH∇φh η∇φh
= ∇φh

− ηh
ˆ∂ηh

∂∇φh

 ∂η

∂∇φh

−1

2
. (A.13)

Next, we use the homogeneity property (12) to find:

∇φh
− ηh

ˆ∂ηh

∂∇φh

 ∂η

∂∇φh

−1

2
= 0. (A.14)

Rearranging gives ∂ηh

∂∇φh


2
∇φh

=

ˆ∂ηh

∂∇φh
ηh . (A.15)

Taking the norm leads to: ∂ηh

∂∇φh


2

∇φh


2 = ηh . (A.16)

By again using homogeneity we arrive at ∂ηh

∂∇φh


2

∇φh


2 =
∂ηh

∂∇φh
· ∇φh . (A.17)

This means that the vectors ∂η/∂∇φh and ∇φh point in the same direction. We conclude η = ∥∇φh
∥2, up to

multiplication with a constant. □
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