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Isogeometric analysis of linear free-surface potential flow 
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A B S T R A C T   

This paper presents a novel variational formulation to simulate linear free-surface flow. The variational 
formulation is suitable for higher-order finite elements and higher-order and higher-continuity shape functions as 
employed in Isogeometric Analysis (IGA). 

The novel formulation combines the interior and free-surface problems in one monolithic formulation. This 
leads to exact energy conservation and superior performance in terms of accuracy when compared to a tradi
tional segregated formulation. This is confirmed by the numerical computation of traveling waves in a periodic 
domain and a three-dimensional sloshing problem. The isogeometric approach shows significant improved 
performance compared to traditional finite elements. Even on very coarse quadratic NURBS meshes the 
dispersion error is virtually absent.   

1. Introduction 

In maritime and offshore applications potential flow is often a very 
useful model for prescribing relevant design scenarios. This is particu
larly the case when waves, which are dominated by inertia effects, are of 
main concern. 

Numerical methods for predicting potential flow are often based on 
boundary integral formulations, referred to as boundary element 
methods (BEM) or panel methods. Examples of successful application of 
the BEM are (i) wave drift forces (Pinkster, 1979), (ii) ship wave resis
tance (Dawson, 1977) and (iii) ship motion and maneuvering (Salvesen 
et al., 1970). These references indicate the starting point of the devel
opment of BEM and numerous works have been published to improve 
these methods. 

All these methods exploit the Greens functions and only require the 
boundary to be discretized. This leads to very low degree-of-freedom 
counts, however, the resulting matrices are dense and expensive to 
assemble. Moreover, straightforward implementations have a very un
favorable scaling in terms of computational time versus degree-of- 
freedom. 

One way to circumvent this scaling issue is the use of the fast 
multipole method (Coifman et al., 1993). An alternative approach, 
which is explored in this paper, is to forgo the boundary integral 
approach. Instead variational methods discretizing the entire volume 
are used, this encompasses the classical finite element method (FEM) as 
well as the novel Isogeometric Analysis (IGA) approach (Hughes et al., 

2005; Cottrell et al., 2009). IGA uses splines as shape functions as 
opposed to the more standard polynomials in FEM. These spline func
tions are also used in CAD. One of the main goals of IGA is to create a 
seamless integration of analysis into design processes by using the same 
geometry description. It turns out that the spline shape functions have 
several other benefits, in terms of efficiency and accuracy (Akkerman 
et al., 2008; Cottrell et al., 2007; Evans et al., 2009). 

Linear finite elements are used for the simulation of water waves by 
for instance Wu and Eatock Taylor (1994), Kim and Bai et al. (1999), and 
Westhuis (2001), just to name a few. In the first two publications it is the 
starting point of a large body of work. An important issue in these 
methods is the coupling of the interior Laplace problem with the 
free-surface evolution, in particular the horizontal velocity at the 
free-surface. The mentioned bodies of work deal with this issue in 
different manners. In Wu and Eatock Taylor (1994) the recovered ve
locity is a projection on a new finite element space. This is referred to as 
Galerkin projection and results in a mixed formulation. Kim and Bai 
(1999) employ a similar potential-velocity mixed formulation but 
employ the Hamiltonian formalism. In Westhuis (2001) the vertical 
velocity at the free-surface is reconstructed using finite differences. 
Zienkiewicz and Zhu (1992) have used other reconstruction methods 
leading to adequate results. 

The previous works do allow for nonlinear waves. In this work we 
take a step back and limit ourselves to linear waves. However, we 
perform a thorough investigation of the numerical behavior of the 
methods considered with a particular focus on the coupling between the 
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interior and free-surface problem. We investigate several weak formu
lations that deal with the coupling in different manners. Moreover, we 
establish the well-posedness of these formulations. In the discrete case, 
we derive accuracy estimates and analyze the energy behavior. Using an 
appropriate time integrator for some weak formulations provides exact 
energy conservation. The spatial discretisation employs higher order 
elements. 

The outline of the paper is as follows. In section 2 the strong 
formulation of the problem is introduced. In section 3 several corre
sponding weak formulations are presented and their energy conserva
tion properties are analyzed. Energy conservation is only guaranteed 
when an appropriate time integrator is used. In section 4 midpoint time 
integration is shown to achieve this. After the temporal discretization, 
we will focus on the spatial discretization in section 5. In this section 
particular attention is given to Isogeometric analysis. In section 6 the 
energy conservation and dispersion properties of the methods are 
investigated. This reveals the superiority of the monolithic approach 
over the segregated approach. In section 7 and 8, the convergence of 
monolithic formulation is analyzed and verified, respectively. Finally, 
the paper ends with two 3D show cases problem in section 9, and con
clusions in section 10. 

2. Strong forms of the free-surface problem 

In this section we introduce three different sets of governing equa
tions describing potential waves. We start off with the nonlinear equa
tions, which are then linearized and condensed to arrive at two 
alternative formulations. 

2.1. Non-linear strong form 

The governing equations read: 

Δϕ¼ 0 in ​ Ω; (1a)  

ϕþ
1
2
rϕ ⋅rϕþ gη ¼ 0 on ​ Γfs; (1b)  

ηt þ ~rϕ ~rη � ϕz ¼ 0 on ​ Γfs; (1c)  

where ϕ : Ω→R is the potential, η : Γfs→R is the water height, and ~r is 
the gradient restricted to exclude the vertical direction. Here Γfs denotes 
the free-surface. 

The Laplace problem (1a) is a consequence of the conservation of 
mass for a constant density fluid, 

r ⋅ u ¼ 0 in ​ Ω (2)  

in conjunction with the assumption of an inviscid and irrotational fluid, 
for which we can write 

u¼ rϕ: (3) 

The dynamic boundary condition (1b) is a condition on the pressure, 
whereas the kinematic condition (1c) ensures that the surface moves 
with the water. 

The problem needs to be augmented with boundary conditions on 
the remaining boundaries. In this work we will assume either periodic 
boundary conditions or no-penetration boundary conditions. In the first 
case no boundary term is present, as such no boundary condition needs 
to be enforced. In case of the no-penetration boundary conditions, we 
get a Neumann boundary condition 

u ⋅ n ¼ n⋅rϕ ¼ 0 on ​ Γ
�

Γfs: (4) 

The problem is completed by specifying appropriate initial condi
tions for ϕ and η at the free-surface. Note that in the fully non-linear 
problem, the location of the free-surface, denoted with Γfs, is part of 
the solution as it is determined by z ¼ η. 

2.2. Linear strong form 

The nonlinear equation (1) can be simplified by assuming small 
disturbances. By neglecting the quadratic terms we arrive at 

Δϕ¼ 0 in ​ Ω; (5a)  

ϕt þ gη ¼ 0 on ​ Γfs; (5b)  

ϕz¼ ηt on ​ Γfs; (5c)  

n ⋅rϕ ¼ 0 on ​ Γ
�

Γfs; (5d)  

where Γfs is now assumed frozen on the undisturbed location. 
By combining the dynamic and kinematic boundary condition, (5b) 

and (5c), we can eliminate the water height η from the problem. The 
problem reduces to: 

Δϕ¼ 0 in ​ Ω; (6a)  

ϕtt þ gϕz ¼ 0 on ​ Γfs; (6b)  

n ⋅rϕ ¼ 0 on ​ Γ
�

Γfs; (6c)  

where the problem is now second order in time. This means that the 
initial condition for η at the free-surface is replaced by an initial con
dition for ϕt at the free-surface. 

3. Weak forms of the linear free-surface problem 

In this section we present several weak formulations of the linear 
wave problem. We start with a weak form of (6), and subsequently 
propose several formulations for problem (5). These later formulations 
of mixed character are more amiable in the nonlinear case or in situa
tions with currents present. Furthermore, we analyze the energy con
servation of the solution for each of the formulations. An analysis of the 
existence and accuracy of the solution for each of the formulations, is 
postponed to section 7. 

We introduce the notation 

ðw; vÞΩ¼
Z

Ω
wv dΩ; (7a)  

ðw; vÞΓfs
¼

Z

Γfs

wv dΓ; (7b)  

to denote the innerproduct over the entire domain and free-surface, 
respectively. The corresponding norms are denoted with 

kwk2
Ω¼ðw;wÞΩ; (8a)  

kwk2
Γfs
¼ðw;wÞΓfs

: (8b)  

3.1. Weak formulation of the reduced problem 

A weak form of (6) follows when multiplying (6a) with an arbitrary 
function and integrating over the domain. The order of the required 
derivatives can be reduced by using Green’s identities and the resulting 
boundary terms can be simplified by using (6b) and (6c). Let W ¼

H1ðΩÞ denote the function-space. The variational formulation of the 
reduced problem reads: Find ϕ 2 W such that for all w 2 W : 

Brðw;ϕÞ¼ 0 (9)  

where 

Brðw;ϕÞ : ¼ðrw;rϕÞΩ þ
1
g
ðw;ϕttÞΓfs

: (10) 
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An energy conservation statement for the reduced form can be 
derived by choosing w ¼ ϕt in (9). This selection gives 

Brðϕt;ϕÞ¼ ðrϕt;rϕÞþ
1
g
ðϕt;ϕttÞΓfs 

¼
d
dt

1
2
jjrϕjj2þ

d
dt

1
2g
jjϕtjj

2
Γfs
¼ 0: (11) 

Realizing that the definition for kinetic and potential are 

Ekin¼
1
2
jjujj2¼

1
2
jjrϕjj2; (12a)  

Epot¼
1
2

gjjηjj2¼ 1
2g
jjϕtjj

2
Γfs
; (12b)  

we arrive at the following statement 

d
dt

Ekinþ
d
dt

Epot ¼ 0: (13) 

Consequently, the reduced weak form is exactly energy conservative 
assuming appropriate time integration. 

3.2. Weak formulations of the segregated problem 

Here we present a segregated weak formulation serving as a refer
ence method based on the work of Wu and Eatock Taylor (Wu and 
Eatock Taylor, 1994) and Wu et al. (1998), Westhuis (2001), Kyoung 
et al. (2005), Bai et al. (2005) and Kim et al. (2006). It is based on the 
strong form (5) and decouples the interior and surface parts of the 
problem. 

The interior problem in strong form reads: 

Δϕ¼ 0 in ​ Ω; (14a)  

ϕ¼ bϕ on ​ Γfs; (14b)  

n ⋅rϕ ¼ 0 on ​ Γ
�

Γfs; (14c)  

where bϕ is input from the free–surface problem: 

bϕt þ gη ¼ 0 on ​ Γfs; (15a)  

ηt ¼ϕz on ​ Γfs: (15b) 

Here is ϕz is given by the interior problem. As such the two problems 
are artificially decoupled. 

Let W 0 and W bϕ 
denote the subspaces of H1ðΩÞ satisfying homo

geneous Dirichlet boundary condition, ϕ ¼ 0 on Γfs, and the homoge
neous Dirichlet boundary condition ϕ ¼ bϕ on Γfs, respectively. 
Furthermore let W Γfs denote the trace space of W . The associated weak 
formulation for the interior problem reads: Find ϕ 2 W bϕ 

such that for all 

w 2 W 0: 

Bintðw;ϕÞ¼ 0 (16)  

where 

Bintðw;ϕÞ : ¼ðrw;rϕÞ: (17) 

For the free-surface the weak form reads: Find ðϕ; ηÞ 2 W Γ� W Γ 

such that for all ðw;vÞ 2 W Γ� W Γ: 

Bfsðfw; vg; fϕ; ηgÞ¼
g2

α2ðv;ϕzÞΓfs
; (18)  

where 

Bfsðfw; vg; fϕ; ηgÞ : ¼ðw;ϕt þ gηÞΓfs
þ

g2

α2ðv; ηtÞΓfs
: (19) 

Here α is a parameter, that eventually will be chosen to depend on 
the time integrator. 

3.2.1. Energy conservation of the segregated formulation 
To arrive and an energy statement we would like to select w ¼ ϕt in 

both the interior problem (16) and free-surface problem (18). However, 
due to the Dirichlet boundary condition on Γfs this is not allowed for the 
interior problem. To remedy this, the weak form (16) is written in an 
equivalent Lagrange multiplier formulation. From which yields exactly 
the same solution if the Lagrange multiplier space is constructed 
appropriately. This Lagrange multiplier formulation reads as follows: 

Find ðϕ; λÞ 2 W �W Γ such that for all ðw;qÞ 2 W � W Γ: 

ðrw;rϕÞΩþðw; λÞΓfs
þðq;ϕÞΓfs

¼ðq; bϕÞΓfs
: (20) 

The new formulation allows the selection of w ¼ ϕt and additionally 
we set q ¼ 0. This yields: 

ðrϕt;rϕÞþ ðϕt; λÞ¼ 0; (21)  

which can be rewritten as: 

d
dt

Ekin¼ � ðϕt; λÞ: (22) 

For the free-surface problem we select w ¼ ϕz and v ¼ ηα2=g which 
results in: 

0¼ðϕz;ϕt þ gηÞΓfs
þ gðη; ηt � ϕzÞΓfs 

¼ ðϕz;ϕtÞΓfs
þ gðη; ηtÞΓfs

: (23) 

This can be rewritten as: 

d
dt

Epot¼ � ðϕz;ϕtÞΓfs
: (24) 

Combining the interior and boundary problem we arrive at the 
following energy statement: 

d
dt

Ekinþ
d
dt

Epot¼ � ðϕt; λþϕzÞ (25)  

which results in conservation of energy if λ ¼ � ϕz. Unfortunately this 
relation only holds on sufficiently smooth meshes, where the solution is 
converged. This means conservation of energy can not be guaranteed. 

In the following two subsections two alternative approaches to 
remedy this energy error are discussed. The first approach is to recon
struct the Lagrange multiplier and use this as a forcing in the boundary 
formulation. The other approach is to solve the boundary and interior 
problem in one monolithic formulation. 

3.3. Segregated formulation, with LM reconstruction 

The Lagrange multiplier from equation (20) can be reconstructed by 
selecting q ¼ 0, which results in 

ðw; λÞΓfs
¼ � ðrw;rϕÞΩ (26)  

for all w 2 W . 
Energy conservation can be recovered if this Lagrange multiplier is 

directly used in the weak form for the free-surface problem given in (18). 
The right-hand side would need to be modified to: 

g2

α2ðv;ϕzÞΓfs
¼ �

g2

α2ðv; λÞΓfs
¼

g2

α2 ðrv;rϕÞ; (27)  

where in the last integral the functions v need to be arbitrarily extended 
into the domain. 

For the modified free-surface problem we again select w ¼ ϕz and 
v ¼ ηα2=g which results in: 
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d
dt

Epot¼ðλ;ϕtÞΓfs
: (28) 

This can be combined with already obtained kinetic energy state
ment (22) to yield: 

d
dt

Ekinþ
d
dt

Epot ¼ 0; (29) 

and as such recovering the energy conservation. 

Remark 1. Note that in the work of Westhuis (2001) a higher-order 
reconstruction of ϕz is used. This reconstruction does not provide 
exact energy conservation. 

3.4. Monolithic weak formulation 

Here we present a monolithic formulation that bypasses the need of 
the Lagrange multiplier construction. When the divergence theorem on 
the interior problem creates boundary terms the kinematic boundary 
condition can be substituted in, this eliminates the problematic deriva
tive. The dynamic boundary condition is added to the weak form in a 
way that guarantees coercivity. 

We propose the weak formulation: Find ðϕ; ηÞ 2 W �W such that for 
all ðw;vÞ 2 W � W , 

Bðfw; vg; fϕ; ηgÞ¼ 0; (30)  

with 

Bðfw; vg; fϕ; ηgÞ¼ ðrw;rϕÞΩ � ðw; ηtÞΓfs 

þ
1
2

�

vþ
α
g

w;ϕt þ gη
�

Γfs

: (31) 

Again α is a parameter that eventually will be chosen based on the 
time integrator. 

3.4.1. Conservation of energy of the monolithic form 
To establish an energy statement we select w ¼ ϕt and v ¼ 2ηt �

α
gϕt 

and substitute this in (31) which gives: 

Bðfϕt; ηtg; fϕ; ηgÞ¼ ðrϕt;rϕÞ � ðϕt; ηtÞΓfs 

þ
1
2

�

2ηt �
α
g

ϕt þ
α
g

ϕt;ϕt þ gη
�

Γfs 

¼ ðrϕt;rϕÞþ gðηt; ηÞΓfs
: (32) 

From this it follows directly that 

d
dt

Ekinþ
d
dt

Epot ¼ 0; (33)  

which indicates that the total energy is conserved. 

4. Time integration 

In sections 3.1 and 3.4.1 it was proven for the respective weak forms 
that the total energy is conserved. This is stated as 

d
dt

Ekinþ
d
dt

Epot ¼ 0: (34) 

When defining the energies as 

En
kin¼

1
2
ðϕn;ϕnÞ; (35a)  

En
pot¼

1
2

gðηn; ηnÞ; (35b)  

and assuming the time-integrator has the correct behavior the time 
continous statement can be translated to a time discrete conservation 
statement, namely 

Enþ1
kin þEnþ1

pot ¼ En
kin þ En

pot: (36) 

This translation holds when the time integrator satisfies the 
following relations, 

ðϕnþ1;ϕnþ1Þ � ðϕn;ϕnÞ

2Δt
¼ð~ϕ; ~ϕtÞ; (37a)  

g
ðηnþ1; ηnþ1Þ � ðηn; ηnÞ

2Δt
¼ gð~η; ~ηtÞ: (37b) 

Here the tilde denotes the value used by the time integrator to 
evaluate the weak formulation. 

In this paper midpoint time integration is adopted for both the first 
and second-order problems. In both cases the required translation is 
valid, as will be shown, while having second-order convergence. 

Note, that as shown in (ten Eikelder and Akkerman, 2018a) gener
alized midpoint time integration almost satisfies (37). In addition to (37) 
it also features a diffusion that scales with O ðΔtÞ. 

4.1. Midpoint time integration for a first-order problem 

For problems with first-order time derivatives the midpoint time- 
integration is determined by the following relations.  

� The ordinary differential equation: 

f
�
ϕnþ1=2

t ;ϕnþ1=2�¼ 0: (38)    

� The interpolation relation: 

ϕnþ1=2¼
1
2
�
ϕnþ1þϕn�: (39)    

� The kinematic relation: 

ϕnþ1¼ϕn þ Δtϕnþ1=2
t : (40) 

This results in three relations for three unknowns that are in principle 
solvable. 

In 7.3 and Appendix B it will be shown that using 

α¼ ∂~ϕt

∂~ϕ
(41)  

results in favourable properties of the formulations. For the midpoint 
time-integration this results in: 

α¼ ∂ϕnþ1=2
t

∂ϕnþ1=2¼

 
∂ϕnþ1

∂ϕnþ1=2
t

∂ϕnþ1=2

∂ϕnþ1

!� 1

¼
2

Δt
: (42)  

4.1.1. Kinetic and potential energy behavior 
To see whether the kinetic energy requirement (37a) holds, we 

rewrite the kinematic relation (40) as: 

ϕnþ1=2
t ¼

1
Δt
�
ϕnþ1 � ϕn�: (43) 

Using this relation we find that: 

�
ϕnþ1=2

t ;ϕnþ1=2�¼

�
1

Δt
�
ϕnþ1 � ϕn�;

1
2
�
ϕnþϕnþ1�

�

¼
1

2Δt
� �

ϕnþ1;ϕnþ1� � ðϕn;ϕnÞ
�
: (44) 

This demonstrates that the kinetic energy requirement is satisfied. 
The potential energy relation goes analogously. 
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4.2. Midpoint time-integration for a 2nd order problem 

For problems with 2nd order time derivatives the midpoint time- 
integration is determined by the following relations.  

� The ordinary differential equation 

f
�
ϕnþ1=2

tt ;ϕnþ1=2
t ;ϕnþ1=2�¼ 0: (45)    

� Two interpolation relations, 

ϕnþ1=2¼
1
2
�
ϕnþϕnþ1�; (46a)  

ϕnþ1=2
t ¼

1
2
�
ϕn

t þϕnþ1
t

�
: (46b)    

� Two kinematic relations, 

ϕnþ1¼ϕn þ Δtϕnþ1=2
t ; (47a)  

ϕnþ1
t ¼ϕn

t þ Δtϕnþ1=2
tt : (47b) 

This results in five relations for five unknowns that are in principle 
solvable. 

4.2.1. Kinetic energy behavior 
Again, to see whether the kinetic energy requirement (37a) holds we 

rewrite the kinematic relation (47a) as 

ϕnþ1=2
t ¼

1
Δt
�
ϕnþ1 � ϕn�: (48) 

Using this relation we again find that 

�
ϕnþ1=2

t ;ϕnþ1=2�¼

�
1

Δt
�
ϕnþ1 � ϕn�;

1
2
�
ϕnþϕnþ1�

�

¼
1

2Δt
� �

ϕnþ1;ϕnþ1� � ðϕn;ϕnÞ
�
; (49)  

demonstrating that the kinetic energy requirement is satisfied. 

4.2.2. Potential energy behavior 
For the potential energy we need to make the following substitution, 

η¼ � 1
g
ϕt (50)  

which is justified by the dynamics boundary condition (5c). The po
tential energy requirement (37b) holds, namely, 

g
�
ηnþ1=2; ηnþ1=2

t

�
¼

1
g

�
1

Δt
�
ϕnþ1

t � ϕn
t

�
;
1
2
�
ϕn

t þϕnþ1
t

�
�

¼
1

2gΔt
� �

ϕnþ1
t ;ϕnþ1

t

�
�
�
ϕn

t ;ϕ
n
t

��

¼
g

2Δt
� �

ηnþ1; ηnþ1� � ðηn; ηnÞ
�
: (51)  

5. Spatial discretization 

In this section the spatial discretization is discussed. For the spatial 
discretization both finite elements (FE) and NURBS based Isogeometric 
analysis (IGA) are used. IGA can be seen as an extension of FE. Both 
methods will be explained separately. But first the commonalities are 
discussed. Both approaches approximate the unknown exact solution, 
denoted as ϕðxÞ, by a weighted sum of known shape functions NbðxÞ: 

ϕðxÞ�ϕhðxÞ ¼
X

b¼1

ndof

ϕbNbðxÞ: (52) 

Here ϕb are the unknown parameters that need to be determined. To 
convert the weak form in a set of equations we select: 

wðxÞ¼NaðxÞ ​ a ¼ 1; 2;…; ndof : (53) 

Using these approximations the terms in the weak form can be 
determined. For instance, a term in the weak form such as ðw;ϕÞ results 
in: 

�
rNa;rϕh�¼

Z

rNa ⋅
�X

n
b¼1 ϕb rNb

�
​ dΩ 

¼
X

b¼1

n Z

rNa ⋅rNb ​ dΩ ​ ϕb¼
X

b¼1

n

Kab ​ ϕb; (54)  

where we dropped the argument x to simplify the notation. The matrix is 
defined as: 

Kab : ¼

Z

rNa⋅rNb ​ dΩ ¼
X

e¼1

nel Z

Ωe

rNa⋅rNb ​ dΩ; (55) 

Here Ωe denotes the element domain, of which the union covers the 
entire domain, viz. Ω ¼ [eΩe. The element integral is approximated 
using Gauss quadrature. Both the domain of the integral and gradients 
incorporate the mapping between the physical and reference domain, 
following the isoparametric paradigm. 

Note that in contrast to the boundary element method the global 
matrices in FE and IGA are usually very sparse due to the compact 
support of the shape functions. An entry in Mab is only non-zero if the 
associated shape functions Na and Nb share at least one element where 
both functions are non-zero. 

Another benefit of variational methods is its ability to deal with 
arbitrary meshes, such as non-uniform spacing. All the geometric effects 
of these non-uniform or deformed elements is automatically taken care 
of by the integration over the domain. 

5.1. Finite elements 

In the case of finite elements the shape functions are often simple 
piecewise polynomials that are continuous at element interfaces. 

The simplest example being the 1D linear shape functions as depicted 
in Fig. 1. 

Higher-order shape functions, such as the quadratic Lagrangian 
shape functions depicted in Fig. 2, are also available. 

The expected convergence of the overall numerical method is often 
directly related to the polynomial order of the shapefunctions used. Note 
that the functions are still continuous at element interfaces, but that 
higher order derivatives are not. 

5.2. Isogeometric analysis 

Isogeometric analysis is an extension of finite elements attempting to 
bridge the gap between design (CAD) and analysis (FE). The idea is to 

Fig. 1. Linear shape functions.  

I. Akkerman et al.                                                                                                                                                                                                                              



Ocean Engineering 201 (2020) 107114

6

use the same NURBS (Non-Uniform Rational B-Splines) of CAD for the 
analysis. This results in an exact representation of CAD geometries, such 
as circles and ellipses. These shape functions allow for higher-order 
continuity at element interfaces, see Fig. 3. 

The higher-order continuity leads to additional constraints, resulting 
in higher-order approximations with limited degrees-of-freedom. Addi
tionally, the higher-order continuity allows a strict tailoring of approx
imations spaces. For the incompressible Navier-Stokes equations this 
can be exploited to create velocity-pressure approximations that result 
in exactly solenoidal solutions (Evans and Hughes, 2013). In (ten 
Eikelder and Akkerman, 2018b; Akkerman and ten Eikelder, 2019) this 
exact divergence is essential for getting correct energy behavior of the 
single and two-fluid Navier-Stokes problem, respectively. In the current 
context the improved approximation and spectral properties are of 
paramount importance. 

In (Akkerman et al., 2008) it is demonstrated that the extra resolu
tion provided by the element kinks are not beneficial. Evans et al. (2009) 
show that these kinks lead to bad performance of higher-order finite 
elements in wave propagation problems. Cotrell et al. (Cottrell et al., 
2007) formally prove that NURBS have optimal approximation prop
erties. This superior behavior is noticed in numerous application areas. 

Due to the success of IGA on the one hand and the specific re
quirements on the other hand, a multitude of alternative spline tech
nologies have emerged. Examples are T-Splines (Bazilevs et al., 2010), 
LR-Splines (Dokken et al., 2013), U-Splines (Thomas et al., 2019) and 
many others. These approaches all allow higher-order continuity at 
element interfaces but avoid the rigid tensorial construction required for 
NURBS. Assuring the shape functions are linearly independent and the 
resulting system matrices are solvable is one of the main issues of these 
alternative splines. 

6. Numerical comparison of the formulations 

In this section the different weak formulations are numerically 

investigated. To this purpose we present a traveling wave case. We 
compare the energy behavior and assess convergence under mesh 
refinement. 

6.1. Two-dimensional traveling wave 

The performance of the different formulations is assesses using a 
simple traveling wave in a two-dimensional periodic domain. 

Periodic boundary conditions are enforced on the sides (Γl and Γr), 
no penetration on the bottom (Γb) and a free-surface on the top (Γfs), as 
depicted in Fig. 4. 

The initial condition is specified to be an airy wave. For a given wave 
height ξ the water elevation and flow potential are given as: 

η ¼ ξ cos ðkx � ωtÞ; (56a)  

ϕ ¼
ω
k

ξ
cosh ðk ðzþ HÞÞ

sinh ðk HÞ
sin ðkx � ωtÞ; (56b)  

with x and z representing the spatial coordinates in horizontal and 
vertical direction. The wavenumber k ¼ 2π=λ with wavelength λ, and 
angular frequency ω are related through the dispersion relation: 

ω2¼ g k tanhðk HÞ; (57)  

where H is the water depth. Snapshots for the solution of an airy-wave 
with a wavelength equal to the size of the domain are given in Fig. 5. 

6.2. Mesh convergence of energy traces 

The simulation are done on a unit size square. The time step is chosen 
in alignment with the mesh resolution: 

h
λ
¼

10Δt
Tex

; (58)  

where Tex is the theoretically expected period of the wave. 
A straightforward computation reveals that the relations for the 

wave energy in this domain are: 

Ekin¼
1
2
k rϕk2

Ω ¼
1
4

gξ2; (59a)  

Epot¼
g
2
k ηk2

Γfs
¼

1
4

gξ2; (59b) 

Fig. 2. Quadratic Lagrangian shape functions.  

Fig. 3. Quadratic NURBS shape functions.  Fig. 4. Problem setup for simple traveling wave.  
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Etot ¼Ekin þ Epot ¼
1
2

gξ2: (59c) 

Figs. 6 and 7 show the convergence of the energy time trace for linear 
finite elements when employing the segregated and monolithic 
formulation. 

The energy traces for the reduced formulation are virtually identical 
to those of the monolithic formulation and are therefore not plotted. The 
segregated formulation displays quite severe fluctuations in the energy 
components and the sum of both does not remain constant. These fluc
tuations disappear with mesh refinement indicating the method is in 
principle valid. The monolithic formulation gives much better results on 
the same mesh when compared with the segregated formulation. The 
fluctuations of the kinetic and potential energy are significantly less than 
for the segregated formulation. On the 12 � 12 mesh the fluctuations are 
barely visible and on the 24 � 24 mesh they are essentially gone. 
Moreover, the total energy stays perfectly conserved, even on the 
coarsest mesh. Note that on the coarser meshes the total energy is 
underestimated. This is due to the loss of energy in projecting the initial 
condition on to the discrete space. This mismatch disappears under mesh 
refinement. 

Figs. 8 and 9 show a similar comparison but for quadratic finite el
ements. To account for the additional degrees-of-freedom the timestep 
half compared with the linear cases. The results are much better owing 
to the improved resolution from the quadratic elements, even for similar 
degree-of-freedom counts. The fluctuations of kinetic and potential en
ergy are significantly reduced, for the monolithic formulation they are 
virtually non-existent even on the coarsest mesh. As a consequence, the 
total energy mismatch for the monolithic formulation is also virtually 
absent. The monolithic formulation already has a converged energy 
behavior on the coarsest mesh of only 3 � 3 quadratic elements. 

6.3. Verification: Mesh convergence of period 

Here we focus on the prediction of the period of the wave. In practice 
this can be of major importance as it determines when wave groups or 
wave crests arrive at certain points. In the study of wave interference the 
exact timing of the arrival of each wave becomes critical. 

Here we use the same setup as in the previous section. The simulation 
is performed for 10 periods. The first 2 zero crossings are discarded and 
the period is computed based on the following 18 zero crossings. 

In Fig. 10 we present the convergence for the different formulations 
for linear finite elements (Fig. 10a) and quadratic finite elements 
(Fig. 10b). The reduced and monolithic formulations have virtually the 
same behavior. In both cases the segregated formulation performs 
worse. All formulations benefit from the use of quadratic over linear 
finite elements. 

Fig. 11 shows the period convergence of the monolithic formulation 
using different basis functions. Increasing the order and continuity of the 
shape functions clearly demonstrates improved behavior. 

Fig. 12 illustrates the benefit of the higher-order continuity NURBS 
basis functions over the standard linear finite elements. In both cases the 
horizontal discretisation consists of only 6 degrees-of-freedom. For the 
linear finite element case this leads to a rough estimate and it results in a 

Fig. 5. Snapshots of the traveling wave problem.  

Fig. 6. Energy time trace for the segregated formulation with linear 
finite elements. 
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Fig. 7. Energy time trace for monolithic formulation with linear 
finite elements. 

Fig. 8. Energy time trace for the segregated formulation with quadratic 
finite elements. 

I. Akkerman et al.                                                                                                                                                                                                                              



Ocean Engineering 201 (2020) 107114

9

bad approximation of the period. In case of cubic NURBS, the spatial 
representation seems nearly perfect. The consequence is that the period 
is predicted very accurately (an error of less than 0:015%). 

Given that the monolithic and reduced formulations are nearly 
indistinguishable and show superior performance, we will focus on the 
monolithic formulation in the following. 

Fig. 9. Energy time trace for the monolithic formulation with quadratic 
finite elements. 

Fig. 10. Convergence of the period for different formulations.  

Fig. 11. Convergence of the period for different discretizations. 
Note that the results in Figs. 10 and 11 could be further improved by employing 
a non-uniform mesh distribution in the vertical direction. However, in order to 
simplify the discussion of the results this option is not discarded. 
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7. Analysis of the weak formulations 

In this section we analyze the existence, uniqueness and accuracy of 
the solution for the monolithic weak formulation. For completeness the 
analysis for the reduced and staggered formulations are given in Ap
pendix A and Appendix B, respectively. Before we perform the analysis 
we will shortly introduce the required mathematical tools. 

7.1. Preliminaries 

To facilitate the analysis of the existence, uniqueness and accuracy of 
the approximate solutions we first introduce some essential technical 
concepts in this section. Existence and uniqueness of the solutions of the 
weak formulations are guaranteed by the Lax-Milgram theorem. See for 
instance (Ern and Guermond, 2004) or other standard works on finite 
element theory. 

Theorem 1 (Lax-Milgram). Let V be a Hilbert space, V’ its dual space, 
and Bð ⋅; ⋅Þ a bilinear form on V that is both bounded and coercive: 

Bðv;ψÞ � Cbjjψ jj jjvjj; (60a)  

Bðψ ;ψÞ � Cc

�
�
�

�
�
�ψ
�
�
�j

2
; (60b)  

where jj⋅jj is norm on V and Cb;Cc are positive scalars. Then, for any f 2
V’, there is a unique solution ψ 2 V to the equation 

Bðv;ψÞ¼ f ðvÞ for all v 2 V: (61) 

The solution ψ 2 V satisfies the a-priori estimate: 

jjψ jj � 1
Cc

sup
v2V

jf ðvÞj
jjvjj

: (62) 

The weak formulations can be converted into a semi-discrete 
formulation by straightforwardly approximating the infinite- 
dimensional function space by a conforming subspace. This is called 
the Galerkin method. Existence and uniqueness of solutions obtained 
with the Galerkin method are automatically inherited from the contin
uous formulations. The approximate error of the Galerkin solution is 
given by Cea’s lemma. 

Lemma 2 (Cea). Given a bounded and coercive bilinear operator Bð ⋅; ⋅Þ
and linear operator f 2 V’, and finite dimensional space Vh approximating V. 
There is a unique solution ψh 2 Vh to the equation 

B
�
vh;ψh�¼ f

�
vh� for all vh 2 Vh: (63) 

The error of the approximate solution is bounded: 

jjψ � ψhjj �
Cb

Cc
inf

vh2Vh
jjψ � vhjj for all ​ ψh 2 Vh; (64)  

where Cb and Cc are the constants in (60). 
Let us assume that we have a decomposition of the domain into a 

mesh M ¼ fΩeg
nel
e¼1 with Ω ¼ [eΩe. The element size is denote by he with 

maximum h ¼ maxehe. The boundary Γ is partitioned as Γ ¼ [f Γf . The 
boundary element size is denote by hf with maximum hb ¼ maxf hf . In 
the finite element case the decomposition represents the finite element 
mesh, whereas in the IGA case it represents the NURBS mesh. 

Assuming sufficient regularity of the solution ψ, a classical conver
gence analysis provides the a-priori interpolation estimates: 

inf
vh2Vh

�
�jrψ � rvhj

�
�
Ω � CΩhpjjψ jjp;Ω; (65a)  

inf
vh2Vh

�
�jψ � vhj

�
�

Γ � CT hpþ1
2kψkp;Ω; (65b)  

inf
vh2Vh

�
�ψ � vh

�
�

Γ � CΓhpþ1jjψ jjp;Γ; (65c)  

where CΩ, CT and CΓ are constants, p is the minimum degree of the shape 
functions and k ⋅kp;Ω and k ⋅kp;Γ are the norms of the pth derivative over Ω 
and Γ, respectively. Note that for simplicity we assume h � hb, the val
idity of this assumption depends on the definition of the element and 
face sizes he and hf . For more details see for instance (Ciarlet, 1978; 
Bazilevs et al., 2006). 

7.2. Time-discrete monolithic weak formulation 

Let the test function pair be W :¼ ðw; vÞ 2 V and the trial function 
pair denote Φ :¼ ðϕ; ηÞ 2 V . The time-discrete weak formulation then 
becomes: 

Find Φnþ1=2 2 V such that for all W 2 V : 
�
rw;rϕnþ1=2� �

�
w; ηnþ1=2

t

�

Γfs 

þ
1
2

�

vþ
α
g

w;ϕnþ1=2
t þ gηnþ1=2

�

Γfs

¼ 0: (66) 

We combine the relations (46)–(47) to arrive at: 

ϕnþ1=2
t ¼

2
Δt
�
ϕnþ1=2 � ϕn�; (67a)  

ηnþ1=2
t ¼

2
Δt
�
ηnþ1=2 � ηn�: (67b) 

Employing these relations we arrive at the time-discrete problem: 
Given ϕn; ηn, find Φnþ1=2 2 V such that for all W 2 V : 

Bm
�
W;Φnþ1=2�¼ FmðWÞ; (68a)  

where 

Bm
�
W;Φnþ1=2� :¼ ðrw;rϕÞ �

2
Δt
ðw; ηÞΓfs

​ þ
1
2

�

vþ
α
g

w;
2

Δt
ϕþ gη

�

Γfs

;

(68b)  

FmðWÞ : ¼ �
2

Δt
ðw; ηnÞΓfs

þ
1
2

�

vþ
α
g

w;
2

Δt
ϕn

�

Γfs

: (68c)  

7.3. Existence and accuracy of the monolithic form 

The coercivity estimate is 

Fig. 12. A visualization of the wave profile for different discretizations. Note 
that the mesh is only deformed to illustrate the wave. Due to the linearization of 
the problem the mesh deformation is not taken into account during 
the simulation. 
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BmðW;WÞ¼ jjrwjj2þ
α

gΔt
jjwjj2Γfs

þ
g
2
jjvjj2Γfs 

þ

�
α
2
�

1
Δt

�

ðw; vÞΓfs
: (69) 

For α ¼ 2=Δt the coercivity estimate is sharp: 

BmðW;WÞ¼
�
�
�

�
�
�

�
�
�W
�
�
�

�
�
�

�
�
�
2

m
; (70)  

where the norm is defined as, 
�
�
�

�
�
�

�
�
�W
�
�
�

�
�
�

�
�
�
2

m
¼ krwk2

þ
2

gΔt2

�
�
�w2

Γfs

�
�
�þ

g
2
jjvjj2Γfs

: (71) 

Next, we consider boundedness. We write: 

BmðW; ΦÞ�rwjjrϕjj

þ
g
2
jjvjjΓfs

kηkΓfs
þ

2
Δt2g
kwkΓfs

jjϕjjΓfs 

þ
1

Δt

�
jjwjjΓfs

kηkΓfs
þ jjϕjjΓfs

jjvjjΓfs

�
: (72) 

By defining the following shorthand notation 

x1 ¼ jjrwjj; y1 ¼ krϕk;

x2 ¼
α
ffiffiffiffiffi
2g
p kwkΓfs

; y2 ¼
α
ffiffiffiffiffi
2g
p kϕkΓfs

;

x3 ¼
1
2

ffiffiffiffiffi
2g

p
jjvjjΓfs

; y3 ¼
1
2

ffiffiffiffiffi
2g

p
kηkΓfs

;

(73)  

we can write, 

BfsðW; ΦÞ� x1y1þ x2y2þ x3y3 

þx2y3þ x3y2¼ x ⋅ Ay: (74) 

Here A is a symmetric matrix: 

A¼

0

@
1 0 0
0 1 1
0 1 1

1

A (75)  

with maximum eigenvalue λmax ¼ 2. Using this λmax and applying 
Cauchy-Schwarz on (7.4) we arrive at the following boundedness 
estimate: 

BfsðW; ΦÞ� λmaxkxk2jjyjj2 

� 2
�
�
�
�
�
�W
�
�
�
�jm
�
�
�
�
�
�Φ
�
�
�
�jm; (76)  

where we used the identities kxk2 ¼
�
�
�
�
�
�W
�
�
�
�jm and y2 ¼

�
�
�
�
�
�Φ
�
�
�
�jm. 

Using Cea’s lemma we arrive at the following, accuracy estimate: 
�
�
�
�
�
�Φ � Φh

�
�
�
�
�
�
m� 2 inf

Wh2V h

�
�
�
�
�
�Φ � Wh

�
�
�
�
�
�

m: (77) 

Using the definition of the norm (70) and the interpolation estimates 
(65) this yields: 
�
�
�

�
�
�

�
�
�Φ � Φh

�
�
�

�
�
�

�
�
�
2

m
� 4
�

1þ
C2

T

C2
Ω

2h
gΔt2

�

C2
Ωh2pkϕk2

p;Ω þ2gC2
Γh2pþ2jjηjj2p;Γfs

:

(78) 

This indicates that depending on the relative importance of the terms 
we could pick an additional full order of convergence order. 

8. V&V of the monolithic formulation 

8.1. Verification: Error convergence 

Here we present the error convergence for the monolithic formula
tion. We measure the error in the norm (70). Note that this norm in
cludes the timestep size Δt. Therefore we choose to perform the mesh 
convergence study with a fixed timestep. In this way the definition of the 

norm does not change when refining the mesh. The timestep is chosen as 
Δt ¼ T=1000, with end time T, leading to negligible time stepping 
errors. 

The convergence of the error is shown in Fig. 13. Note that the 
theoretical convergence rates are O ðhpÞ and O ðhpþ1Þ, with p the order of 
the basis functions, for the volumetric and boundary term. This indicates 
that for all discretizations, except for linear finite elements, the potential 
boundary term is the dominant term. Remark that obtained convergence 
rates are larger than the theoretical values, which confirms the viability 
of the formulation. 

8.2. Validation: Dispersion relation 

To show the adequacy of the monolithic formulation we will perform 
a validation case which consists of predicting the phase velocity of the 
wave for different heights. The theoretical solution is: 

cp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k

tanhðkHÞ
r

; (79)  

with phase velocity cp. The numerical approximation is obtained on a 
mesh with 8 � 8 cubic NURBS elements resulting in a 10 � 11 degrees- 
of-freedom resolution. The time step is taken such that 80 periods fit 
in the time domain. 

The phase speed is computed from the wave period in the same 
manner as in the previous subsections. Fig. 14 shows that the numerical 
method gives a near perfect prediction of the wave speed over a wide 
range of water depths. This demonstrates that the monolithic formula
tion produces the correct physical answer. 

9. 3D showcases 

Here we consider two 3D test cases. These cases demonstrate the 
ability to deal with 3D geometries and non-uniform meshes. Note that 
IGA offers the ability to represent circles exactly. 

9.1. Sloshing in closed container 

Here we consider a sloshing case in a three-dimensional container 
with a circular obstruction in the middle of the domain. The domain is 
represented with a 32 � 32 x 32-mesh with C1-quadratic shape functions 
(see Fig. 3). No penetration boundary conditions are enforced on all 
boundaries, except the free-surface. A picture of the setup is presented in 
Fig. 15. 

The cube has 1:0m x 1:0m x 1:0m domain while the cylinder has a 
14:1cm diameter. The water surface is given an initial perturbation in 

Fig. 13. Convergence of error for the monolithic formulation. The dashed lines 

indicate convergence of the orders Oðh2Þ, O

0

@h31
2

1

A and O

0

@h41
2

1

A respectively. 
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one quarter of the domain. Some snapshots of the resulting water surface 
using the monolithic formulation are shown in Fig. 16. 

The resulting traces of kinetic, potential and total energy are depic
ted in Fig. 17. It shows that kinetic and potential energy are exchanged 
in an erratic fashion due to the bouncing waves between the cylinder 
and the outer boundaries. Just as in the 2D cases the total energy is 
perfectly conserved. 

9.2. Vertical circular cylinder in regular waves 

Here we consider a traveling wave case in a three-dimensional 
domain with a circular cylinder. This case is inspired on (Bai and Tay
lor, 2006). 

The domain is represented with 5 NURBS patches with 16 � 16 x 16- 
elements with C1-quadratic shape functions (see Fig. 3). A picture of the 
patch topology and the resulting mesh is presented in Fig. 18. The 
domain measures 10m x 20m x 5m, the cylinder has diameter of 1m and 
its center is 5m located from the boundaries. 

The initial condition is an unperturbed airy wave, with a 5m wave
length and 20cm amplitude. After sufficient time has passed and the 
transient is disappeared, a periodic solution emerges. Some snapshots of 
the resulting water-surface using the monolithic formulation are shown 
in Fig. 19. The color indicates the value of the potential ϕ. 

The resulting traces of kinetic, potential and total energy are depic
ted in Fig. 20. It shows that kinetic and potential energy vary harmon
ically. Kinetic and potential energy are perfectly exchanged and total 
energy is conserved exacty. 

10. Conclusion 

This paper presents a novel variational formulation to simulate linear 
free-surface flow. Similar to formulations found in literature the po
tential and water height are the primary variables. This should facilitate 
the extension to non-linear cases and situations with forward speed. 

The novelty of the formulation is that the interior problem and ki
netic and dynamic boundary conditions are combined in one formula
tion. This monolithic formulation results in provable energy 
conservation, if a proper time integrator is selected. Additional to the 
superior energy behavior, the monolithic formulation exhibits signifi
cantly reduced dispersion errors. 

The dispersion properties of the numerical method are further 
improved by the adoption of Isogeometric analysis. Isogeometric anal
ysis is a discretisation approach that at the same time allows for higher- 
order finite elements and higher-order and higher-continuity basis 

Fig. 14. Dispersion relation.  

Fig. 15. Mesh of the 3D sloshing problem.  

Fig. 16. Snapshots of standing waves. Note that the free-surface is only 
deformed to illustrate the wave. Due to the linearization of the problem the 
free-surface deformation is not taken into account during the simulation. 

Fig. 17. Energy trace of the 3D sloshing problem.  
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functions. This later feature results in more efficient and improved 
behavior of the numerical solutions. 

We demonstrate that the benefit of employing Isogeometric analysis 
over traditional finite elements is substantial. The error in the kinetic 
and potential energy is very small for quadratic NURBS on very coarse 
meshes. Moreover, on very coarse discretizations (4–6 degrees-of 
freedom per wavelength) the dispersion error is negligible. 

The analysis of numerical results is performed for a two-dimensional 
linear wave problem. Simple sloshing and traveling wave cases 
demonstrate that the results directly translate to three-dimensions. 
Possible further work entails the extension to nonlinear cases with for
ward speed. 
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Appendix A. Analysis of the reduced form 

To analyze the properties of this variational form, we first discretize 
in time. Approximating ϕ by ϕnþ1=2 and ϕtt by ϕnþ1=2

tt gives: 
Given ϕn;ϕn

t ;ϕ
n
tt , find ϕnþ1=2 2 W such that for all w 2 W : 

�
rw;rϕnþ1=2�

Ω þ
1
g
�
w;ϕnþ1=2

tt

�

Γfs
¼ 0: (A.1) 

In order to prove existence, uniqueness and accuracy estimates, we 
use Lax-Milgram and Cea’s lemma. To that purpose we establish coer
civity and boundedness of the weak form. 

We combine the relations (46)–(47) and get: 

Fig. 18. Patch topology and mesh of the 3D wave problem. Note that the mesh 
is slightly stretched towards the free-surface, resulting in a non-uniform mesh in 
the vertical direction. To allow waves to travel from left to right, their is a 
periodic boundary condition on the respective boundaries. A no penetration 
boundary condition is imposed on all other boundaries, except the free-surface. 

Fig. 19. Snapshots of a traveling waves. Note that the free-surface is only 
deformed to illustrate the wave. Due to the linearization of the problem the 
free-surface deformation is not taken into account during the simulation. 

Fig. 20. Energy trace of the traveling wave problem.  
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ϕnþ1=2
tt ¼

4
Δt2

�
ϕnþ1=2 � ϕn� �

2
Δ

ϕnþ1=2
t : (A.2) 

Using this relation we arrive at the following weak form: 
Given ϕn;ϕ

n
t ;ϕ

n
tt , find ϕnþ1=2 2 W such that for all w 2 W : 

Br
�
w;ϕnþ1=2�¼ FrðwÞ; (A.3a)  

where 

Brðw;ϕÞ : ¼ ðrw;rϕÞΩ þ
4

Δt2g
ðw;ϕÞΓfs

; (A.3b)  

FrðwÞ : ¼
4

Δt2g
ðw;ϕnÞΓfs

þ
2

Δtg
�
w;ϕn

t

�

Γfs
: (A.3c) 

By defining a problem-dependent norm as 
�
�
�

�
�
�

�
�
�w
�
�
�

�
�
�

�
�
�
2

r
: ¼rw2

Ω þ
4

Δt2g
kwk2

Γfs
; (A.4)  

the coercivity and boundedness estimates are sharp in this norm: 

Brðw;wÞ¼
�
�
�

�
�
�

�
�
�w
�
�
�

�
�
�

�
�
�
2

r
for ​ all ​ w 2 W (A.5a)  

Brðw;ϕÞ� krwkΩjjrϕjjΩ þ
4

Δt2g
kwkΓfs

jjϕjjΓfs
;

�
�
�
�
�
�
�w
�
�
�
�
�
�

r

�
�
�
�
�
�ϕ
�
�
�
�
�
�

r for ​ all ​ w2W ;ϕ2W : (A.5b) 

The coercivity follows directly from the definition of the norm, while the boundedness estimate requires the Cauchy-Schwarz inequality. 
Using Cea’s lemma we arrive at the following, accuracy estimate: 

�
�
�
�
�
�ϕ � ϕh��

�
�
�
�

r � inf
wh2Wh

�
�
�
�
�
�ϕ � wh

�
�
�
�
�
�

r: (A.6) 

Using the definition of the norm (A.4) and the interpolation estimates (65) this yields: 
�
�rϕ � rϕh��2

Ω þ
4

Δt2g
�
�
�
�ϕ � ϕh��

�
�2
Γfs

�

�

1þ 4
C2

T

C2
Ω

h
Δt2g

�

C2
Ωh2pjjϕjj2p;Ω:

(A.7) 

This indicates that depending on the relative importance of the terms we could pick an additional half order of convergence order. 

Appendix B. Analysis of the segregated form 

Appendix B.1Interior problem 

The weak form (16) is trivially coercive: 

Bintðw;wÞ¼ jjrwjj2Ω for ​ all ​ w 2 W 0: (B.1) 

Boundedness of the weak form follows directly from Cauchy-Schwartz: 

Bintðw;ϕÞ � krwkΩjjrϕjjΩ
for ​ all ​ w 2 W 0;ϕ 2 W bϕ

; (B.2)  

in the standard H1ðΩÞ-norm. 
Using Cea’s lemma the accuracy is estimate to be: 

�
�
�
�rϕ � rϕh��

�
�

Ω � inf
wh2W h

0

�
�
�
�rϕ � rwh

�
�
�
�
Ω: (B.3) 

Using the interpolation estimates (65) this yields: 
�
�
�
�rϕ � rϕh��

�
�

Ω � CΩhpjjϕjjp;Ω: (B.4) 

This is the standard optimal estimate for standard Poisson problems. 

Appendix B.2Boundary problem 

To analyze the properties of this variational form, we first discretize in time. Substitution of the relations (67) into (18) gives: 
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Given ϕn;ϕn
t ; ηn; ηn

t and ϕz, find Φnþ1=2 2 V Γfs such that for all W 2 V Γfs : 

Bfs
�
W; Φnþ1=2�¼FfsðWÞ (B.5a)  

where 

BfsðW; ΦÞ : ¼

�

w;
2

Δt
ϕþ gη

�

Γfs

þ
g2

α2

2
Δt
ðv; ηÞΓfs

; (B.5b)  

FfsðWÞ : ¼
2

Δt
ðw;ϕnÞΓfs

þ
g2

α2

2
Δt
ðv; ηnÞΓfs 

þ
g2

α2ðv;ϕzÞΓfs
: (B.5c) 

Coercivity of the boundary problem follows via: 

BfsðW; WÞ¼
2

Δt
jjwjj2Γfs

þ gðw; vÞþ
g2

α2
2

Δt
jjvjj2Γfs 

�

�
2

Δt
�

α
2

�

jjwjj2Γfs
þ

�
g2

α2
2

Δt
�

g2

2α

�

kvk2
Γfs
: (B.6) 

Selecting α ¼ 2=Δt yields: 

BfsðW; WÞ¼
�
�
�

�
�
�

�
�
�W
�
�
�

�
�
�

�
�
�
2

s
; (B.7)  

with the norm defined as: 
�
�
�
�

�
�
�
�

�
�
�
�W
�
�
�
�

�
�
�
�

�
�
�
�

2

s
: ¼

1
Δt
kwk2

Γfs
þ

g2Δt
4
jjvjj2Γfs

: (B.8) 

Next, we prove boundedness. Applying Cauchy-Schwartz we get: 

BfsðW; ΦÞ�
2

Δt
jjwjjΓfs

jjϕjjΓfs
þ gkwkΓfs

jjηjjΓfs 

þ
g2Δt

2
kvkΓfs

kηkΓfs
: (B.9) 

By defining the following shorthand notation: 

x1 ¼
1
ffiffiffiffiffi
Δt
p jjwjjΓfs

; y1 ¼
1
ffiffiffiffiffi
Δt
p jjϕjjΓfs

;

x2 ¼
g
ffiffiffiffiffi
Δt
p

2
vΓfs ; y2 ¼

g
ffiffiffiffiffi
Δt
p

2
ηΓfs

;

(B.10)  

we can write, 

BfsðW; ΦÞ� 2x1y1þ 2x2y2þ 2x1y2¼ x⋅Ay: (B.11) 

Here A is a symmetric matrix: 

A¼
�

2 2
0 2

�

(B.12)  

with maximum eigenvalue λmax ¼ 2. Using this λmax and applying Cauchy-Schwarz on (B.11) we arrive at: 

BfsðW; ΦÞ�λmaxkxkk yk2 

� 2jjjWjjjsjjjΦjjjs; (B.13)  

where we used the identities jjxjj2 ¼
�
�
�
�
�
�W
�
�
�
�
�
�
s and jjyjj2 ¼

�
�
�
�
�
�Φ
�
�
�
�
�
�
s. 

Using Cea’s lemma the accuracy is estimated as: 
�
�
�
�
�
�Φ � Φh

�
�
�
�
�
�
s� 2 inf

Wh2V h

�
�
�
�
�
�Φ � Wh

�
�
�
�
�
�
s: (B.14) 

Using the definition of the norm (B.7) and the interpolation estimates (65) this yields: 
�
�
�
�

�
�
�
�

�
�
�
�Φ � Φh

�
�
�
�

�
�
�
�j

2
m�

2
Δt

C2
Γh2pþ2jjϕjj2p;Γfs 

þ
g2Δt

2
C2

Γh2pþ2kηkp;Γfs
: (B.15)  
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