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a b s t r a c t 

This paper presents a new monolithic free-surface formulation that exhibits correct kinetic and potential 

energy behavior. We focus in particular on the temporal energy behavior of two-fluids flow with varying 

densities. Correct energy behavior here means that the actual energy evolution of the numerical solution 

matches the evolution as predicted by the discrete two–fluid equations. We adopt the level-set method 

to describe the two-fluid surface. To ensure the correct energy behavior we augment the interface con- 

vection equation with kinetic and potential energy constraints. We solve the resulting formulation con- 

sisting of the fluid and interface equations in a monolithic fashion using a recently proposed level-set 

method [26]. For the spatial discretization divergence-conforming NURBS are adopted. The resulting dis- 

crete equations are solved with a quasi-newton method which partially decouples the constraints from 

the rest of the problem. 

As we focus on the energy behavior of time integration in case of varying densities, we restrict 

ourselves to low-Reynolds-number flow allowing simple Galerkin discretizations. High-Reynolds-number 

two-fluid flows that require stabilization are beyond the scope of the current paper. The simulation of a 

dambreak problem numerically supports the correct energy behavior of the proposed methodology. The 

proposed methodology improves the solution quality significantly upon a more traditional approach. Due 

to the excellent accuracy per degree of freedom one can suffice with a much lower resolution. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Free-surface problems are ubiquitous in science and engineer-

ng, in particular problems involving air-water surfaces are often

ncountered in a maritime, offshore or coastal engineering. Nu-

erical methods developed to simulate free-surface problems of-

en use the level-set method, originally proposed in [1] , to describe

he evolution of the free-surface. The level-set approach avoids

he possibility of negative densities which could break down the

ntire computation. Variational formulations of convection prob-

ems generally (excluding some notable exceptions [2–4] ) do not

atisfy the maximum principle. This means that under- and over-

hoots of the density profile can appear, especially when dealing

ith large density jumps (e.g. air-water flows). Since the level-set

ethod precludes this, it is a very popular method for all sorts of

volving interface problems, see for instance the review papers [5–

] . The methodology is particularly often employed when a finite

lement method is used for the discretization [10–16] . Also the
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ombination of isogeometric analysis [17] with level-sets has been

xplored [18] . Moreover, these methodologies have also been used

o perform fluid-structure interaction (FSI) in conjunction with a

ree-surface, see e.g. [19–21] . 

The combination of a fluid and a structure is often solved

onolithically in the FSI community. This approach has clear ad-

antages in terms of stability which translates into improved ro-

ustness and efficiency. The advantage of monolithic coupling is

escribed in a general setting in [22] , while the gain of monolithic

ree-surface modeling is demonstrated in [20] . In the latter pa-

er the free-surface/rigid body problem is formulated and solved

n a strongly coupled way. Comparing with a staggered Navier–

tokes/level-set convection formulation, this significantly improves

he stability of the methodology. The staggered formulation was

hown to create artificial energy, which rendered the solution com-

letely useless at some point in time. For ease of implementation,

edistancing of the level-set 1 and a mass correction step were kept

ut of the main iteration loop. Instead, these corrections to the
1 The level-set methodology requires a scaling and redistancing step of the level- 

et to have control over the size of the smoothing region around the interface. 
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interface were applied after the main solve. This leads to small er-

rors in the conserved properties momentum and energy. 

The creation of artificial energy in the numerical formulation

is evidently considered unfavorable. The numerical energy plays a

fundamental role in the numerical stability of the method, which

was already recognized in [23] . Despite that fact that artificial en-

ergy creation could lead to useless solutions, many methods devel-

oped for the simulation of two-fluid flows can unfortunately create

artificial energy. Moreover, even in the mono-fluid case the pop-

ular stabilized finite element methods can create artificial energy

[24,25] . These papers correct this imperfection in the single-fluid

case. 

In this paper we develop a free-surface formulation based on

level-sets that has guaranteed correct energy behavior. That is the

conservation of energy in the inviscid case, and guaranteed phys-

ical energy decay when viscosity is present. We solve the fluid

and interface evolution problem, including redistancing and mass

correction, in a monolithic fashion. Therefore we make use of the

novel level-set formulation with an efficient and robust redistanc-

ing approach developed in [26] . The standard discretization ap-

pears to have a mismatch between discretized and continuous ki-

netic and potential energy. To correct this mismatch and to ensure

the correct behavior of these energies we augment the convection

equation with the required constraints. Demanding mass conserva-

tion results in an additional constraint. To enforce these constraints

we utilize the method of Lagrange-multipliers. 

The goal of the current paper is to develop a time-integration

procedure for two-fluid flow that exhibits the correct energy be-

havior. This procedure should not artificially destroy or create en-

ergy at the interface due to changing densities. In order to keep

the focus on this, we do not incorporate stabilization techniques.

Hence, this paper deals with low Reynolds number flows. A follow-

up paper addresses the high Reynolds number case. 

The outline of the remainder of this paper is as follows.

Section 2 presents the continuous form of the governing fluid

equations, both in strong and weak form. Furthermore, it discusses

the conservation of mass, momentum and energy in the con-

tinuous setting. Section 3 provides the standard discretization. It

closely mimics the weak continuous form in a discrete setting. The

standard formulation is shown not to have the correct interface

evolution in order to guarantee correct evolution of mass, kinetic

energy and potential energy. Moreover, this section also presents

the employed level-set method. The methodology is presented in

the isogeometric analysis framework which is shown to be bene-

ficial for the energy evolution behavior. Next, Section 4 presents

our novel constrained method that corrects these discrepancies. In

contrast to the standard discretization, this approach displays the

correct mass, potential energy and kinetic energy behavior. The

discrete formulation is solved using a quasi-newton solver. The

numerical verification on a prototype dam-break problem is pre-

sented in Section 5 . It compares the energy evolution of the stan-

dard method and the newly proposed method with a benchmark

convective approach. In the final Section 6 we draw conclusions

and discuss some avenues for future work. 

2. Continuous formulation 

2.1. The governing equations 

Let � ⊂ R 

d , d = 2 , 3 , denote the spatial domain with bound-

ary ∂� = �. The problem under consideration consists of solving

the incompressible Navier–Stokes equations dictating the two-fluid

flow: 

∂ t (ρu ) + ∇ · (ρu � u ) + ∇p − ∇ · 2 μ∇ 

s u = ρg in � × I, 

(1a)
 t ρ + ∇ · (ρu ) = 0 in � × I, (1b)

 t ρ + u · ∇ρ = 0 in � × I, (1c)

 (x , 0) = u 0 (x ) in �, (1d)

(x , 0) = ρ0 (x ) in �, (1e)

or the fluid velocity u : � → R 

d , the pressure p : � → R and the

ensity ρ : � → R . The problem is augmented with appropriate

oundary conditions. The Eqs. (1a) –(1d) describe the balance of

omentum, the conservation of mass, the incompressiblity con-

traint and the initial conditions, respectively. We denote with

 ∈ � the spatial parameter and with t ∈ I = (0 , T ) the time with

nd time T > 0. The dynamic viscosity μ : � → R 

+ depends on the

ensity, i.e. μ = μ(ρ) . Furthermore, the body force is g : � × I →
 

d (this is often the gravitational force), the initial velocity is u 0 :

→ R 

d and the initial density is ρ0 : � → R . We assume a zero-

verage pressure for all t ∈ I . The various derivative operators are

he temporal one ∂ t and the symmetric gradient ∇ 

s = 

1 
2 

(∇ + ∇ 

T 
)
.

he normal velocity is u n := u · n . 

In this paper we employ the level-set method to describe

he two-fluid interface. Hence, we define the scalar function φ =
(x , t) to distinguish the time-dependent subdomains of the two

uids, �0 
t and �1 

t respectively, via an interface �t : 

0 
t := { x ∈ � | φ(x , t) > 0 } , (2a)

1 
t := { x ∈ � | φ(x , t) < 0 } , (2b)

t := { x ∈ � | φ(x , t) = 0 } . (2c)

The fluid properties of the two subdomains are determined by

he indicator function: 

= ρ0 (1 − H) + ρ1 H, (3a)

= μ0 (1 − H) + μ1 H. (3b)

The function H = H(φ) indicates the subdomain. The constant

ensities of two fluids are ρ0 and ρ1 , and μ0 and μ1 are the

onstant dynamic viscosities of fluids. For convenience we intro-

uce the notation �ρ = ρ1 − ρ0 for the jump in density and �μ =
1 − μ0 for the jump in dynamic viscosity. Note that a sharp inter-

ace requires the indicator function H to be discontinuous. A dis-

rete implementation often uses a continuous indicator function.

his function gets arbitrarily close to the discontinuous indicator

unction in case of a vanishing transition domain. In the follow-

ng we assume a smooth H to simplify the exposition. We describe

iscrete implementation of H = H(φ) in Section 3.2 . 

By combining (1b) –(1c) with (3) the governing equations take

he form: 

 t (ρu ) + ∇ · (ρu � u ) + ∇p − ∇ · 2 μ∇ 

s u = ρg , (4a)

 · u = 0 , (4b)

 t H + u · ∇H = 0 , (4c)

here we omit the initial condition and the specification of do-

ains for convenience. 



I. Akkerman and M.F.P. ten Eikelder / Computers and Fluids 181 (2019) 77–89 79 

 

o  

a  

{  

t

 

P

w  

a  

t  

i

 

v  

f  

c  

p

2

 

i  

t  

a  

i

2

 

i  

(

 

c  

C  

g

2

 

(  

b  

a  

m

 

f

〈
w  

t  

ψ

w  

s  

a

λ

 

f  

u  

a

w

2

 

q  

s

 

h  

t  

t  

o

K

 

e  

r

E

 

v

−

 

t  

i  

v  

2 1 
2 
We assume no-penetration boundary conditions, i.e. n · u = 0

n �, and free-slip boundary conditions. Defining the appropri-

te velocity U = { u ∈ [ H 

1 (�)] d ; u · n = 0 } and pressure space P =
 p ∈ L 2 (�) ; ∫ 

pd� = 0 } , the standard conservative weak formula-

ion corresponding to the strong form (4) reads: 

Find u ∈ U , p ∈ P, H ∈ H 

1 (�) such that for all w ∈ U , q ∈
, ψ ∈ L 2 (�) , 

(w , ∂ t (ρu )) − (∇w , ρu � u ) − (∇ · w , p) + (∇ w , 2 μ∇ 

s u ) 

= (w , ρg ) , (5a) 

(q, ∇ · u ) = 0 , (5b) 

(ψ, ∂ t H) + (ψ, u · ∇H) = 0 , (5c) 

here ( · , · ) is the L 2 ( �) inner product on the interior. All bound-

ry terms vanish due to the choice of boundary conditions. Note

hat the weak formulation (5) is equivalent to the strong form (4)

n the case of sufficiently smooth solutions. 

This section continues with the discussion about the conser-

ation of mass, momentum and energy associated with the weak

ormulation (5). This provides the blueprint on how to obtain

onservation statements in the discrete setting, which is in its turn

resented in Section 3 . 

.2. Conservation properties 

To derive conservation properties we select appropriate weight-

ng functions. As we are still on the continuous level, we assume

he selection of the appropriated weights is allowed under reason-

ble restrictions. This does not apply in the discrete setting, which

s presented in Section 3 . 

.2.1. Mass 

The conservation of mass follows when we select the weight-

ng functions w = 0 , q = H�ρ and ψ = �ρ in the weak statement

5): 

(H�ρ, ∇ · u ) = 0 , (6a) 

(�ρ, ∂ t H) + (�ρ, u · ∇H) = 0 . (6b) 

Next, we (i) apply Green’s identity on (6b) , (ii) use that �ρ is

onstant and (iii) use that the domain does not change in time.

ombining the resulting equations delivers the conservation of

lobal mass: 

d 

d t 

∫ 
�

ρ d� = 0 . (7) 

.2.2. Momentum 

To show the conservation of linear momentum, the weak form

5) needs to be augmented with an auxiliary flux [27,28] . This is to

e able to select the appropriate weighting function on the bound-

ry �. We note that this approach can be understood as a Lagrange

ultiplier construction [24,25] . 

The problem takes the form: 

Find u ∈ [ H 

1 (�)] d , p ∈ P, H ∈ H 

1 (�) and λ ∈ H 

− 1 
2 (�) such that

or all w ∈ [ H 

1 (�)] d , q ∈ P, ψ ∈ L 2 (�) , and η ∈ H 

− 1 
2 (�) 

(w , ∂ t (ρu )) − (∇w , ρu � u ) − (∇ · w , p) + (∇ w , 2 μ∇ 

s u ) 

= (w , ρg ) + 〈 n · w , λ〉 , (8a) 

(q, ∇ · u ) = 0 , (8b) 
(ψ, ∂ t H) + (ψ, u · ∇H) = 0 (8c) 

 η, n · u 〉 = 0 . (8d) 

here 〈 · , · 〉 is a duality pairing on the boundary. 2 This formula-

ion allows the choice of the weighting functions w = e i , q = 0 and

 = 0 . Substitution into (8) gives: 

(e i , ∂ t (ρu )) = (e i , ρg ) + 〈 n · e i , λ〉 , (9) 

here e i are the Cartesian unit vectors. Equivalence of (8) with the

trong form (4) provides via Green’s identity the expression of the

uxiliary flux [24,25] : 

= −p + 2 μn · (∇ 

s u n ) . (10) 

The auxiliary flux is the generalized constraint force which en-

orces the no-penetration constraint. Given that e i is an arbitrary

nit vector and assuming a time-independent domain, we arrive

t: 

d 

d t 

∫ 
�

ρu d� = 

∫ 
�

ρg d � −
∫ 
�

pn d� + 

∫ 
�

2 μ n · ∇ 

s u d�, (11) 

hich is conservation of momentum. 

.2.3. Energy 

The conservation of energy follows when selecting w = u and

 = p in the formulation (5). The choice of ψ is postponed. As-

uming no-slip boundary conditions leads to 

(u , ∂ t (ρu )) − (∇u , ρu � u ) + 2 ‖ μ1 / 2 ∇ 

s u ‖ 

2 = (u , ρg ) . (12) 

We proceed by analyzing the kinetic and potential energy be-

avior separately. The evolution of the kinetic energy is linked to

he first two terms on the left-hand side of (12) , while the evolu-

ion of the potential energy is associated with the right-hand side

f (12) . Both require a different weighting function ψ . 

inetic energy 

The evolution of the kinetic energy is governed by the accel-

ration and convective term in (12) . To show this both terms are

ewritten. The acceleration term can be rewritten as 

(u , ∂ t (ρu )) = (u , u ∂ t ρ) + (u , ρ∂ t u ) 

= 

1 
2 
(u · u , ∂ t ρ) + 

d 

d t 
E kin . (13) 

The kinetic energy is defined as 

 kin := 

∫ 
�

1 
2 
ρu · u d�. (14) 

We assume that the domain does not change in time. The con-

ective term can be rewritten as 

( ∇u , ρu � u ) = 

1 

2 

( u , ∇ ( ρu � u ) ) − 1 

2 

( ∇u , ρu � u ) 

= 

1 

2 

( u , u (u · ∇ρ) ) + 

1 

2 

( u , ρu · ∇u ) 

+ 

1 

2 

( u , ρu ∇ · u ) − 1 

2 

( ∇u , ρu � u ) 

= 

1 

2 

( u , u (u · ∇ρ) ) + 

1 

2 

( u , ρu ∇ · u ) . (15) 

At this point it is important to emphasize that the convec-

ive contribution does not vanish, even for divergence-free veloc-

ty fields. This is in contrast to the single fluid case where it does

anish, see e.g. [25,30,31] . The difference lies in the presence of the
Note that n · u ∈ H (�) , see [29] . 
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density. In general the density varies between the two fluids and

thus its gradient is not identically zero. 

Note that the volume term with a density gradient reduces

to an interface term with a density jump in case of a vanishing

smoothing distance. 

A straightforward combination of Eq. (13) and (15) reveals: 

(u , ∂ t (ρu )) − (∇u , ρu � u ) = 

d 

d t 
E kin + (∂ t ρ + u · ∇ρ, 1 

2 
u · u ) 

+ 

1 

2 

( u , ρu ∇ · u ) , (16)

We select ψ = 

1 
2 �ρu · u in (5c) and modify q = p + 

1 
2 ρu · u , re-

call (3a) and add the result to (16) . This causes the second and

third term on the right-hand side to vanish and we are left with: 

d 

d t 
E kin = (u , ∂ t (ρu )) − (∇u , ρu � u ) , (17)

which is the asserted relation alluded earlier. 

Potential energy 

The evolution of the potential energy is governed by the body

force term on the left-hand side of (12) . Assuming no-slip bound-

ary conditions this term can be written as: 

(u , ρg ) = (u , (∇x ) ρg ) 

= −(∇ · (ρu ) , x · g ) 

= (∂ t ρ, x · g ) − (x · g , ∂ t ρ + ∇ · (ρu )) . (18)

The last term on the right-hand side vanishes if we select ψ =
�ρ x · g and recall (3a) . Using the definition for the potential en-

ergy 

E pot := −
∫ 
�

ρx · g d�, (19)

and assuming that the domain does not change in time, we arrive

at: 

d 

d t 
E pot = −(u , ρg ) , (20)

which proves the claim. 

Total energy 

We refocus our attention on the overall energy evolution re-

lation as stated in (12) . Using the derived equations relating to ki-

netic energy (17) and potential energy (20) , the overall energy evo-

lution takes the form: 

d 

d t 
E kin + 2 ‖ μ1 / 2 ∇ 

s u ‖ 

2 = − d 

d t 
E pot , (21)

which is the conservation of energy. This clearly states that in the

inviscid case, kinetic and potential energy are exchanged, and the

total energy is therefore conserved. 

3. Standard conservative discretization 

This section introduces a discrete formulation that closely re-

sembles the continuous formulation of the previous section. We

examine the conservation properties of this formulation. The

Crank-Nicolson method is employed for the temporal discretiza-

tion, while a combination of Galerkin, SUPG and level–sets is em-

ployed for the spatial discretization. We start this section by pro-

viding a brief review of isogeometric analysis which serves as an

important concept of the developed methodology. Next, we discuss

the level-set method and subsequently the standard discretization

with its conservation properties. 
.1. Isogeometric analysis 

To discretize the governing fluid flow equations we use the

sogeometric analysis (IGA) technology developed by Hughes and

oworkers in [32] . IGA integrates the historically different fields

f Computer-Aided Design (CAD) and Computer-Aided Engineering

CAE). It unifies the representation of the geometry of the CAD

esign and CAE analysis. To this purpose NURBS (Non-Uniform

ational B-Spline) basis functions are employed. For the formal

efinition of these shape functions we refer to [17] and [33] . The

arametrization of the solution is the same as that of the underly-

ng geometry, which is known as the isoparameteric concept. Iso-

eometric analysis shares many features in common with finite el-

ments, such as the underlying variational framework, the isopara-

etric concept, locally supported basis functions, and possibilities

or h - and p -refinement. However, isogeometric analysis offers

icher possibilities for geometry modeling and solution represen-

ation, compared to the finite element methods. For example, the

URBS surfaces in IGA match exactly the CAD geometry and IGA

ffers an improved refinement strategy known as k -refinement,

hich is not possible in FEM. Due to this k -refinement the global

egree-of-freedom count is smaller in comparison with standard

nite elements. This leads to efficient higher-order discretizations,

oth in theory [34,35] and in applications, see for instance [36] . 

In this paper the geometric features are not of direct impor-

ance. Here we take advantage of the higher-order and higher-

ontinuity properties of the NURBS. The ability to control the in-

erelement continuity, besides the element order itself, gives the

URBS the flexibility to construct combinations of velocity and

ressure discretization inconceivable before. Well-known finite-

lement families, such as Taylor-Hood elements, are defined for

ifferent orders. These families can be extended by adding in-

erelement continuity as a new parameter. In [37–40] this addi-

ional parameter is used to construct stable velocity and pressure

airs that allow pointwise divergence-free velocity fields. In the

ection 3.3 we show that the discretization indeed employs point-

ise solenoidal velocities. 

.2. Level–set approach with explicit redistancing 

Here we include a brief description of the level-set method

ith explicit redistancing proposed in [26] . 

To describe the fluid interface the indicator function H = H(φ)

ould be represented by a simple Heaviside function: 

(φ) = 

{ 

0 if φ < 0 , 
1 
2 

if φ = 0 , 

1 if φ > 0 , 

(22)

here the positive and negative part each represent one of the two

uids and the zero-level is the interface. This definition leads to

roblems when directly employed in a numerical method. There-

ore, the sharp Heaviside function is often smoothed. There are

everal option to perform the smoothing. A popular choice, that

e also adopt here, is to take as smoothed Heaviside function: 

ˆ 
 (φα) = 

{ 

0 if φα ≤ −1 , 
1 
2 
(1 + sin ( π

2 
φα)) if | φα| < 1 , 

1 if φα ≥ 1 , 

(23)

here φα is a scaled level-set. 

Scaling and redistancing techniques of the level-set are neces-

ary to properly control the smoothing region around the interface.

raditionally, the redistancing step is done by solving the Eikonal-

quation [41,42] . This is a nonlinear problem which makes it hard

o include it in a monolithic solver. The demanded computational

ffort and lack of robustness are often the main concerns. Another

ssue involves the required large number of iterations to arrive at
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 redistanced level-set. An additional complication is the trade-off

etween on the one hand the actual redistancing around the in-

erface and on the other maintaining the interface location. These

equirements contradict and therefore a compromise is demanded.

The scaling is often done by only taking the local mesh size

nto account. This can cause problems in highly graded meshes.

asing the scaling on the average mesh size between the current

oint and the closest point to the interface, circumvents this issue.

ote that this would require the scaling to be based on an integral

uantity. 

These redistancing and scaling issues have been tackled in [26] .

he crucial step is to introduce a scaling parameter α that relates

he convected φ with the redistanced and rescaled φα via φα =
/α. This directly solves the paradox of redistancing and main-

aining the interface. Independent of the scaling, the zero-level-set

f φα and φ are identical. It turns out that both redistancing and

caling can be achieved by solving a simple projection for α: 

Find α ∈ H 

1 ( �) such that for all η ∈ H 

1 ( �), 

η, ‖∇ ξφ‖ 

)
= ( η, α) + ε

(∇ ξ η, ∇ ξα
)
. (24) 

ere ε is a given smoothing parameter and ∇ ξ is the gradient with

espect to the reference coordinate ξ . 

.3. Discrete weak formulation 

The weak formulation employs for a large part the standard dis-

retization of the continuous conservative form (5). The discretiza-

ion of the momentum and continuity equations indeed uses the

taightforward Galerkin method. Hence, the methodology is only

pplicable for the computation of low Reynolds number flows;

he potential convective instability that can occur because of the

alerkin discretization is thus circumvented. The use of stabiliza-

ion techniques to deal with high Reynolds flows is beyond the

cope of this paper. However, the spatial discretization of the in-

erface evolution equation does require stabilization. This equation

s a pure convection problem and therefore a standard discretiza-

ion is prone to wiggles. Accordingly, we adopt the well-known

UPG method [43] as a stable discretization of the interface con-

ection equation. Furthermore, since the level-set methodology is

mployed, the level-set φ replaces the indicator function H . 

emark 

The Galerkin method requires the use of compatible velocity

nd pressure discretizations. The isogeometric analysis concept,

hich employs NURBS basis functions, is employed for this pur-

ose. The NURBS-spaces guarantee exact divergence-free velocity

elds. Section 3.1 provides some background on this. 

We employ the Crank–Nicolson method for the temporal inte-

ration. This method is an unconditionally stable second-order in-

egrator. The motivation for this choice emerges from an energy

erspective. In a mono-fluid setting, i.e. a constant density, this

ethod is an energy conservative time-integrator. In fact, within a

eneralized- α framework, it is the only second-order method that

an be linked to proper energy decay. This is in detail described in

24] . 

Employing the described ingredients we arrive at the discrete

eak formulation: 

Find u 

n +1 ∈ U , p n +1 ∈ P, φn +1 ∈ H 

1 (�) such that for all w ∈
, q ∈ P, ψ ∈ H 

1 (�) , 

w , 
ρn +1 u 

n +1 − ρn u 

n 

�t 

)
− (∇w , ρn +1 / 2 u 

n +1 / 2 
� u 

n +1 / 2 ) 

−(∇ · w , p n +1 ) + (∇ w , 2 μ∇ 

s u 

n +1 / 2 ) = (w , ρn +1 / 2 g ) , (25a) 

(q, ∇ · u 

n +1 / 2 ) = 0 , (25b)
ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)

+ 

(
τu 

n +1 / 2 · ∇ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)
= 0 , (25c) 

here the test space ψ is reduced to H 

1 ( �) to accommodate the

UPG terms. The stabilization parameter is defined as in [18] : 

= 

(
4 

�t 2 
+ u 

n +1 / 2 · Gu 

n +1 / 2 
)−1 / 2 

, (26) 

nd where G is the second-rank metric tensor: 

 = 

∂ ξ

∂x 

T 
∂ ξ

∂x 

. (27) 

Here x and ξ are the spatial coordinates in the physical and pa-

ameter domain respectively. The superscripts n, n + 1 / 2 , n + 1 re-

er to the current, intermediate and next time-level, respectively,

nd �t denotes the time step. The fluid properties are given by 

= ρ0 

(
1 − ˆ H 

(
φ

α

))
+ ρ1 ̂

 H 

(
φ

α

)
, (28a) 

= μ0 

(
1 − ˆ H 

(
φ

α

))
+ μ1 ̂

 H 

(
φ

α

)
, (28b) 

here α is computed via (24) . 

Note that the choice of the time-level in (25b) is not stan-

ard. It is required to arrive at the desired energy behavior, see

ection 3.4.3 . 

.3.1. Divergence-free solutions 

As mentioned in Section 3.1 and detailed in [37–40] the abil-

ty to tune the interelement continuity of the NURBS functions al-

ows the construction of favorable velocity and pressure spaces. In

articular they can be chosen such that the divergence of the ve-

ocity is a member of the pressure space. On general non-aligned

r curved meshes, this requires the use of the Piola transformation

44,45] . 

This allows us to prove that the velocities are point-wise

ivergence-free by selecting the weights w = 0 , q = ∇ · u 

n +1 / 2 and

 = 0 in (5) . It is important to realize that this choice is only pos-

ible due to the delicate choice of the discretization spaces. We

rrive at 

∇ · u 

n +1 / 2 ‖ 

2 = 0 , (29) 

his directly leads to, 

 · u 

n +1 / 2 = 0 , for all x ∈ �. (30) 

his means that the solution is point-wise divergence-free at the

idpoint in time. Using the definition for the midpoint velocity

ector we get: 

 · u 

n +1 = −∇ · u 

n . (31) 

his means that the divergence error from one time step is directly

irrored into the next time step. Hence, the discretization provides

ointwise divergence-free solutions for a solenoidal initial condi-

ion. 

Alternatively, the velocity in the continuity equation can be

ased on time-step n + 1 . This would lead to divergence-free so-

utions independent of the initial condition. However, in this case

he discretized version of the energy statement given in (12) would

e augmented with the term 

1 
2 
(∇ · u 

n +1 − ∇ · u 

n , p n +1 ) , (32) 

ue to the mismatch in time-levels of the velocities. When em-

loying point-wise divergence-free solutions this term vanishes

except for possibly the first time-step). 
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3.4. Conservation properties 

3.4.1. Mass 

The straightforward choice of weighting functions to arrive at

a statement about the conservation of mass would be to take the

discrete counterpart of the continuous case, i.e. w = 0 , q = �ρ ˆ H 

and ψ = �ρ∂ ̂  H /∂φ. However, this is not a valid choice: both the

functions ˆ H and ∂ ̂  H /∂φ are not in the weighting function spaces.

Mass conservation can therefore not be guaranteed a priori . To

equip the discrete formulation with the mass conservation prop-

erty, it should be explicitly enforced. This means that the con-

straint 

h 1 (φ
n +1 ) := 

∫ 
�
(ρn +1 − ρn ) d� = 0 (33)

should be fulfilled to guarantee global mass conservation. 

3.4.2. Momentum 

In contrast to the conservation of mass, for the conservation

of momentum the same procedure as in the continuous case can

be directly employed. This results in the global conservation state-

ment: 

�t −1 

∫ 
�
(ρn +1 u 

n +1 − ρn u 

n ) d�

= 

∫ 
�

ρn +1 / 2 g d � −
∫ 
�

p n +1 n d� + 

∫ 
�

2 μ n · ∇ 

s u 

n +1 / 2 d�, (34)

which is the straightforward discrete counterpart of (21) . 

3.4.3. Energy 

The statements about the conservation of the discrete energies

follow when the discrete counterparts of the continuous weights

are chosen: w = u 

n +1 / 2 and q = p n +1 . The specific choice for ψ is

again postponed. This leads to the discrete equivalent of (12) which

states: (
u 

n +1 / 2 , 
ρn +1 u 

n +1 − ρn u 

n 

�t 

)
−

(∇u 

n +1 / 2 , ρn +1 / 2 u 

n +1 / 2 
� u 

n +1 / 2 
)

+ 2 ‖ μ1 / 2 ∇ 

s u 

n +1 / 2 ‖ 

2 = 

(
u 

n +1 / 2 , ρn +1 / 2 g 
)
. (35)

We proceed in a similar way as in the continuous case. 

Kinetic energy 

The discrete acceleration and convective terms can be expressed

as: (
u 

n +1 / 2 , 
ρn +1 u 

n +1 − ρn u 

n 

�t 

)
− (∇u 

n +1 / 2 , ρn +1 / 2 u 

n +1 / 2 
� u 

n +1 / 2 ) 

= 

E n +1 
kin 

− E n 
kin 

�t 
+ 

(
ρn +1 − ρn 

�t 
, 1 

2 
u 

n · u 

n +1 

)
+ 

(∇ ·
(
ρn +1 / 2 u 

n +1 / 2 
)
, 1 

2 
u 

n +1 / 2 · u 

n +1 / 2 
)
, (36)

where the kinetic energies are defined by taking (14) at the corre-

sponding time-level. This is a discrete version of (16) . In the con-

tinuous case the second term on the right-hand side cancels by

choosing an appropriate weight in the interface evolution Eq. (25c) .

Similarly to the mass conservation, the density needs to be related

to the level–set by select a weight proportional to H or ∂H 
∂φ

which

is not allowed. Additionally, (i) the time levels of the velocity fields

in the time derivative and convection term do not match and (ii)

the unwanted terms caused by the SUPG stabilization pollute the

relation. To ensure a link between the acceleration and convective

term with the kinetic energy, the constraint 

h 2 (φ
n +1 ) : = 

(
ρn +1 − ρn 

�t 
, 1 

2 
u 

n · u 

n +1 

)
− (ρn +1 / 2 u 

n +1 / 2 , u 

n +1 / 2 · ∇u 

n +1 / 2 ) = 0 (37)
eeds to be explicitly enforced. Note that Green’s identity has been

pplied in the last term. The divergence-free velocities provided

y the isogeometric analysis framework have positive benefits for

he constraints. Employing this property we can formulate the con-

traint as 

ρn +1 − ρn 

�t 
, 1 

2 
u 

n · u 

n +1 

)
+ (u 

n +1 / 2 · ∇ρn +1 / 2 , 1 
2 

u 

n +1 / 2 · u 

n +1 / 2 ) = 0 . (38)

Here we recognize a convective interface contribution in the

econd term. Let us now consider the mono-fluid case, i.e. ρ0 = ρ1 

nd μ0 = μ1 . In this setting the convection equation would be su-

erfluous. The constraint takes the form: 

( 1 
2 

u 

n +1 / 2 · u 

n +1 / 2 , ∇ · u 

n +1 / 2 ) = 0 , (39a)

hich is obviously fulfilled when dealing with solenoidal velocity

elds. In other words, in the case of a constant density, the use

f a velocity-pressure pair that results in divergence-free velocities

s essential for the formulation stated in (50) to yield an energy

onservation statement. 

otential energy 

The discrete counterpart of (18) is: 

(u 

n +1 / 2 , ρn +1 / 2 g ) = −E n +1 
pot − E n pot 

�t 

−
(

ρn +1 − ρn 

�t 
+ ∇ · (ρn +1 / 2 u 

n +1 / 2 ) , x · g 

)
, 

(40)

here the potential energies are defined by taking (19) at the cor-

esponding time level. For reasons similar as before, a weight ψ 

an not be chosen to ensure that the last term of (40) vanishes.

ence, we need to enforce the constraint 

 3 (φ
n +1 ) := 

(
ρn +1 − ρn 

�t 
, x · g 

)
− (ρn +1 / 2 , u 

n +1 / 2 · g ) = 0 (41)

o guarantee a direct link between the body force and the potential

nergy. Again Green’s identity has been applied in the last term. 

Similar to the kinetic energy case, the divergence-free velocities

ield favorable properties here. It reduces the constraint here to: 

ρn +1 − ρn 

�t 
+ u 

n +1 / 2 · ∇ρn +1 / 2 , x · g 

)
= 0 , (42)

n which we again recognize a convective interface contribution in

he second term. 

otal energy 

Combining the previous results leads to the energy statement: 

E n +1 
kin 

− E n 
kin 

�t 
+ h 2 (φ

n +1 ) + 2 ‖ μ1 / 2 ∇ 

s u 

n +1 / 2 ‖ 

2 

= −E n +1 
pot − E n pot 

�t 
− h 3 (φ

n +1 ) , (43)

hich is the discrete counterpart of (21) with two additional

erms, namely h 2 (φ
n +1 ) and h 3 (φ

n +1 ) . The sign and magnitude of

hese terms is undetermined and therefore artificial energy growth

an not be precluded. In order to guarantee correct energy behav-

or the additional terms should vanish. 

This paper proceeds in Section 4 by enforcing the constraints

ia a Lagrange multiplier approach. This leads to a numerical

ethod with correct energy behavior for solving two-fluid flow. 
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. The discrete energy-corrected formulation 

In this section we present the corrected version of the standard

iscretization (25) that satisfies the global conservation of mass

nd energy. Therefore we employ the Lagrange multiplier method

o enforce the constraints obtained in Section 3 . 

First, we present a small sketch of this method in a general ab-

tract setting, after which we apply this approach to the standard

iscretization (25). We close with the solution strategy of the dis-

retized system. 

.1. The Lagrange multiplier method in a general PDE setting 

Here we present a brief description of the Lagrange multiplier

ethod in a general PDE setting. Let V be a suitable function space

ith the L 2 -innerproduct ( · , · ) and induced norm ‖ · ‖ . Consider

he constrainted problem for a linear operator L and the func-

ionals f, h ∈ L 2 ( �): 

Find v ∈ V such that, 

 v = f, (44a) 

 (v ) = 0 , (44b) 

here 

 (v ) = 

∫ 
�

˜ h (v )d�. (44c) 

Note that (4 4b) –(4 4c) represents the enforcement of a global

onstraint. The standard variational formulation corresponding to

44) is: 

Find v ∈ V and λ ∈ R such that for all w ∈ V

( w, L v − f ) + λ

(
w, 

∂ ̃  h 

∂v 

)
= 0 , (45a) 

 (v ) = 0 . (45b) 

Note that (45a) can be converted into a strong form similar to

44a) augmented with a perturbation term that scales with the La-

range multiplier λ. This term creates the freedom in (45a) in or-

er to satisfy the constraint (44b) . 

Problem (45) could either be solved directly, or via a procedure

hat circumvents the saddle point nature of the problem. The lat-

er approach splits the solution into two components of which the

econd one scales with λ: 

 = v f + λv λ. (46) 

This decouples the problems into one purely linked to the PDE:

Find v f ∈ W such that for all w ∈ W

(w, L v f − f ) = 0 , (47) 

nd one involving the perturbation: 

Find v λ ∈ W such that for all w ∈ W

(w, L v λ) + 

(
w, 

∂ ̃  h 

∂v 

)
= 0 . (48) 

The Lagrange multiplier λ follows from the constraint: 

 (v f + λv λ) = 0 . (49) 

Note that the solution (46) satisfies the weak form (45) only if

 is linear. 
.2. The numerical formulation 

To enforce the constraints (33), (37) and (41) in the weak for-

ulation (25) we apply the methodology presented in the previ-

us subsection to the interface evolution Eq. (25c) . In principle one

ould also choose to add the constraints to the momentum equa-

ion. However, this would effect the energy behavior of the formu-

ation, which is the primary quantity of interest. Additionally, the

nalysis of the energy behavior in the continuous and discrete set-

ing, presented in Sections 2 and 3 , indicate that the correct evo-

ution of the interface leads to the correct energy behavior. It is

herefore natural to perturb the convection equations. 

Augmenting the formulation (25) with the mass (33) , kinetic

nergy (37) and potential energy constraint (41) and perturbing

he convection equation appropriately, we arrive at the energy-

orrected formulation: 

Find u 

n +1 ∈ U , p n +1 ∈ P, φn +1 ∈ H 

1 (�) and λi ∈ R 

3 such that

or all w ∈ U , q ∈ P, ψ ∈ H 

1 (�) , 

w , 
ρn +1 u 

n +1 − ρn u 

n 

�t 

)
− (∇w , ρn +1 / 2 u 

n +1 / 2 
� u 

n +1 / 2 ) 

−(∇ · w , p n +1 / 2 ) + (∇ w , 2 μ∇ 

s u 

n +1 / 2 ) = (w , ρn +1 / 2 g ) , (50a) 

(q, ∇ · u 

n +1 / 2 ) = 0 , (50b) 

ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)

+ 

(
τu 

n +1 / 2 · ∇ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)
+ 

∑ 

i =1 , 2 , 3 

λi δh i = 0 , (50c) 

 i = 0 , i = 1 , 2 , 3 , (50d) 

here 

h 1 = 

(
ψ, ∂ φρ

)
, (50e) 

h 2 = �t −1 
(
∂ φρ ψ, u 

n · u 

n +1 
)

− (u 

n +1 / 2 · ∇u 

n +1 / 2 , u 

n +1 / 2 ∂ φρ ψ) , 

(50f

h 3 = �t −1 
(
∂ φρ ψ, x · g 

)
− 1 

2 
(∂ φρ ψ, u 

n +1 / 2 · g ) . (50g) 

The constraints h 1 , h 2 and h 3 are given in (33), (37) and (41) ,

espectively, while δh 1 , δh 2 and δh 3 are their variations with re-

pect to the level-set function φn +1 . The derivative of the density

ith respect to the level-set function can be computed as: 

∂ρ

∂φ
= (ρ1 − ρ0 ) 

∂ ˆ H 

∂φα

∂φα

∂φ
= (ρ1 − ρ0 ) 

∂ ˆ H 

∂φα
α (51) 

here the derivative of the smooth Heaviside (23) is: 

∂ ˆ H 

∂φα
= 

{ 

0 if φα < −1 , 
π
4 

cos ( π
2 
φα) if | φα| ≤ 1 , 

0 if φα > 1 . 

(52) 

his is a smoothed version of the Dirac function. The stabilization

arameter is defined in (26) while the fluid parameters are deter-

ined via (28) and (24) . 

Due to the explicit enforcement of the constraints (50d) , the

lobal mass and energy conservation are restored, as discussed in
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2  
Section 3 . The formulation (50) obeys the following energy bal-

ance: 

E n +1 
kin 

− E n 
kin 

�t 
+ 2 ‖ μ1 / 2 ∇ 

s u 

n +1 / 2 ‖ 

2 = −E n +1 
pot − E n pot 

�t 
, (53)

which directly mirrors the energy balance of the continuos formu-

lation (21) . 

4.3. Solution strategy of the discrete system 

Here we describe our strategy to solve discrete system resulting

from (50). 

4.3.1. Matrix structure 

The formulation (50) results in a slightly unusual structure of

the problem due to the constraints. A straightforward Newton lin-

earization namely leads to a discrete system with the following

block structure: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A G B 1 0 0 0 

G 

T 0 0 0 0 0 

B 2 0 C t 1 t 2 t 3 
r T 1 0 s T 1 0 0 0 

r T 2 0 s T 2 0 0 0 

r T 3 0 s T 3 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

�u 

�p 
�φ
�λ1 

�λ2 

�λ3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

R u 

R p 

R φ

R 1 

R 2 

R 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (54)

In the matrix, presented in block form, the capital letters rep-

resent sparse matrices while the small letters denote full vectors.

Here A is the jacobian of the unsteady convection-diffusion part of

the momentum equations and G and G 

T are the discrete gradient

and divergence matrices, respectively. The jacobian C stands for the

SUPG formulation of the level-set convection equation, while the

jacobians B 1 and B 2 represent the two-way coupling between in-

terface convection and momentum equation. The vectors r i , s i and

t i are the result of the enforcement of the constraints. The global

matrix has a non-symmetric structure due to the absence of the

Lagrange multiplier terms in the momentum equations. Lastly, the

right-hand side vector is composed of the residuals of correspond-

ing equations. 

Depending on implementation the structure of the matrix can

be inconvenient, in particular when dealing with a parallel MPI-

based solver infrastructure. Therefore a plain Newton solver is not

the solution strategy adopted here, instead an alternative solver

strategy analogous to the one discussed in Section 4.1 is used. 

4.3.2. The quasi-Newton solver 

Note that a large portion of the nonlinear character of the

problem originates from the additional scalar constraints. These

equations need to be solved to a tight tolerance-level in order to

achieve the required conservation behavior. It is therefore benefi-

cial to decouple the part linked to the constraints from the global

problem and solve it to a tight tolerance without incurring high

computational costs. To this purpose we adopt the strategy pre-

sented in Section 4.1 . This results in a convenient matrix structure

and allows the nonlinear constraints to be solved to a tolerance

independent of the tolerance-level of the global problem. The con-

straints can be solved with machine precision with minimal over-

head. 

Consider the variational formulation (50). Note that each of the

Lagrange Multipliers λi perturbs the level-set solution φ with a

global function, i.e. we write: 

φ = φ0 + 

3 ∑ 

i =1 

λi φi , (55)

where φ0 is the unperturbed solution and φi (i = 1 , 2 , 3) are the

global perturbations associated with each of the Lagrange multi-

pliers. 
By solving the perturbations φi instead of the Lagrange Multi-

liers λi , the original conservative formulation (25) is augmented

ith: 

Find φi ∈ W such that for all w ∈ W, 

ψ, 
φn +1 

i 
− φn 

i 

�t 

)
+ (ψ, u 

n +1 / 2 · ∇φn +1 / 2 
i 

) 

+ 

(
τu 

n +1 / 2 · ∇ψ, 
φn +1 

i 
− φn 

i 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 
i 

)
= δh i , 

for i = 1 , 2 , 3 . (56)

ere δh i are the variations of the constraints with respect to φ
iven in (50e) –(50g) . This converts the original matrix structure

54) into to a more standard form: 
 

 

 

 

 

 

A G B 1 0 0 0 

G 

T 0 0 0 0 0 

B 2 0 C 0 0 0 

0 0 0 C 0 0 

0 0 0 0 C 0 

0 0 0 0 0 C 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

�u 

�p 
�φ
�φ1 

�φ2 

�φ3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

R u 

R p 

R φ

R φ1 

R φ2 

R φ3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (57)

hich only consists of sparse matrix blocks, where R φi 
are the

esiduals of (56) . We solve this system of equations using a stan-

ard flexible GMRES with additive Schwartz preconditioning, as

rovided by Petsc [46,47] . The Lagrange Multipliers are determined

ia: 

 j 

( 

φ0 + 

∑ 

i =1 , 2 , 3 

λi φi 

) 

= 0 , (58)

here h j represents the constraints given in (33), (37) and (41) .

his is a nonlinear system of three equations with three unknowns.

his is efficiently solved using the Newton method at each global

teration. This results in a nested nonlinear iteration loop. Note that

his does not pose any computational problems since the nested

roblem is very small and thus easily solved. This subsolver only

terates over the constraints. This results in a tight enforcement

f these constraints without the need to solve the entire coupled

roblem (54) . 

A detailed step-by-step description of the algorithm is given in

ppendix A . 

. Numerical results 

In this section we test the performance of proposed energy-

orrected formulation (50) on a dambreak problem. To investigate

he importance of the correctness of the kinetic and potential en-

rgy evolution, we also carry out simulations without the corre-

ponding constraints. In these simulations only the proposed mass

orrection (7) is active. We refer to this conservative method with

orrect mass behavior as the conservative formulation in the fol-

owing. To benchmark the numerical results we also employ a for-

ulation in the convective form. This is because most two-fluid

imulations based on the level-set methodology are performed

ith this form, see for instance [10–15] . We employ a convective

ormulation with correct mass behavior. This results in a method

hat is very similar to previously published [16,18,20,21] . For the

recise convective formulation consult Appendix B . 

.1. Dambreak problem 

A well-known dambreak problem serves as test case for the

erification of the energy evolution of the presented methods. The

mployed setup closely resembles the one of Martin and Moyce

4 8,4 9] . In this problem a column of water of size 14.6 cm by

9.2 cm collapses due to the gravitational force. The computational
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Fig. 1. Snapshots of the time evolution of the water column in the dambreak problem. The colors represent the velocity magnitude given in m/s. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Time trace of the divergence error on a 160 × 80 mesh. 
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Fig. 3. Total energy decay for the different methods on a 40 × 20 mesh. 
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omain is of size 58.4 cm by 35.04 cm and filled for the remainder

ith air. For the densities of the fluids we use ρ0 = 1 . 00 kg/m 

3 

nd ρ1 = 10 0 0 kg/m 

3 , which is similar to the physical values for

ir and water. The viscosity is set to μ0 = μ1 = 2 . 0 kg/(m.s)

or both fluids. This is significantly higher than the physical value

or the dynamic viscosity. These higher values are chosen in order

o avoid instabilities that would otherwise occur in the Galerkin

iscretization. Stabilized formulations are avoided on purpose, as

orrect energy evolution of stabilized formulations is a problem by

tself. Consult [24,25] for further elaboration and solution strate-

ies. 

All computations are done on uniform Cartesian meshes with

ostly linear shape functions. Each velocity component is dis-
retized with a C 1 -quadratic shape functions in the appropriate di-

ection. This deviation is essential to arrive at a stable velocity-

ressure pair that results in solenoidal solutions. Furthermore, the

omputations are performed with no-penetration boundary condi-

ions on all the surfaces. 

All computations are done with the Crank–Nicolson time-

ntegration. The time-step is adjusted with a simple proportional

ontroller [50] , 

t n +1 = 

(
CFL target 

CFL n 

)K p 

�t n (59) 

here the CFL-number is defined as, 

FL n = �t n max 
x ∈ �

√ 

u 

n · G u 

n (60) 
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Fig. 4. Rate of change of energies for the convective formulation. 

Fig. 5. Rate of change of energies for the energy–corrected formulation. 
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and CFL target is the target value and K p is the proportional gain.

Here, both values are set to 0.75. Fig. 1 shows 9 snapshots of the

solution profiles. The water column collapses, subsequently moves

rightwards, runs up the right wall and moves back leftwards. All

the snapshots display smooth solutions. This is linked to (i) the rel-

atively high viscosity employed, (ii) the smooth NURBS basis func-

tions and (iii) the novel level-set formulation. 

Fig. 2 shows a typical the time trace of the divergence error.

This plot confirms the divergence free character of the solution as

discussed in Section 3.3.1 . The L 1 ( �)-, L 2 ( �)- and L inf ( �)- errors

are all below 10 −10 , which effectively means that these are almost

zero with respect to machine precision. Note that the L inf -error is

determined by sampling the error at the integration points. Given

that the divergence is in the pressure space, this implies it must

be almost zero up to machine precision everywhere. 

5.2. Examination of the energy behavior 

Here we test the energy behavior of the various formulations.

Fig. 3 visualizes the energy evolution of the different formulations.

During the simulation no energy is supplied to the system, i.e. the

total energy needs to decay monotonically. This is not the case for

the conservative formulation which shows an exponential growth

of energy. The result is an unstable and diverging computation. We

do not further consider this approach. In contrast, the monolithic

convective and monolithic energy-corrected formulations do result

in stable simulations with monotonic energy decay. The energy de-

cay of the convective formulation is somewhat misleading as it is
artly the consequence of the high viscosity in the presented test

ase. Note that the conservative and energy-corrected formulation

how a small difference in energy behavior. We now look into this

ap. 

Fig. 4 shows the rate of change in kinetic and potential energy

or the monolithic convective formulation. This rate of change is

omputed in two different ways. The first one is the actual differ-

nce between the energies in two consecutive time steps: 

d 

d t 
E pot = �t −1 

(∫ 
�

ρn +1 g · x d� −
∫ 
�

ρn g · x d�
)
, (61)

d 

d t 
E kin = �t −1 

(∫ 
�

1 
2 
ρn +1 u 

n +1 · u 

n +1 d� −
∫ 
�

1 
2 
ρn u 

n · u 

n d�
)
, 

(62)

hich is referred to as actual. The second rate of change is a di-

ect result of the weak formulation of the Navier–Stokes equa-

ions (B.2). In a computation with correct energy behavior these

pproaches should provide the same results. Fig. 4 displays a mis-

atch of the two rates of energy. Globally they follow the same

rend but there are some clear deviations, particularly around t =
 . 3 s when the water hits the right wall. Furthermore, the actual

ate of energy change shows some wiggles. 

Next, in Fig. 5 we depict the same rates for the energy-

orrected formulation. Here the two rates of change are exactly

he same. The kinetic and potential energy constraints force the

nterface to evolve such that the correct global energy behavior is
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Fig. 6. Convergence of the energy decay. 

Fig. 7. Convergence of the energy decay. 
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btained. Note that the wiggles in the rate of change of the poten-

ial energy have vanished, whereas the wiggles in kinetic energy

volution rate are significantly attenuated. This clearly shows the

mportance of correct energy behavior for the overall quality of the

btained solutions. 

Lastly, we focus on the convergence characteristics of the meth-

ds. Fig. 6 shows the convergence plots of the global energy

volution. Both methods clearly converge. However, the energy-

orrected method on the coarser meshes already exhibits an ex-

ellent agreement with results on the finer meshes. This is not the

ase for the convective method. This is also clear from Fig. 7 which

hows the convergence plots of the two methods in one plot. 

The energy evolution of the energy-corrected method on the

oarsest mesh (40 × 20) is very similar to that of the convective

ethod on the finest mesh (160 × 80). Hence, the novel approach

mproves significantly the accuracy. 

. Conclusion 

In this work we have presented a method with correct energy

ehavior for the computation of two-fluid flow. The formulation is

f conservative-type and uses the level-set method to describe the

nterface. 

The analysis of the conservation properties (mass, momentum

nd energy) on a continuous level reveals that the correct evolu-

ion of interface is of critical importance. In contrast to the con-
inuous form, the standard discrete formulation does not guaran-

ee these conservation properties. This is linked to both the spatial

nd temporal integration of the interface evolution. 

The proposed methodology rectifies these discrepancies by ex-

licitly enforcing correct mass, kinetic energy and potential energy

ehavior in the formulation. These constraints are enforced via a

agrange multiplier construction in the interface evolution equa-

ion. The level-set convection equation itself is stabilized with a

tandard SUPG approach. Furthermore, the approach is presented

n the isogeometric analysis framework to ensure exact incom-

ressiblity of the velocity fields. This is a natural feature of the

resented method since it reduces the approach to a valid method

n the single-fluid case. 

The implementation employs a quasi-newton approach to solve

he nonlinear system. This approach partially disconnects the con-

traints from the rest of the global problem. It leads to a favorable

atrix structure, isolates the ‘most’ nonlinear part of the formula-

ion, and allows strict enforcement of the constraints without in-

urring too much computational overhead. 

We have tested the presented methods on a prototype

ambreak problem. The numerical results show that the standard

onservative method breaks down whereas the novel methodology

hows excellent performance. A standard convective formulation,

erving as reference result, provides reasonable results. However

hen looking at the kinetic and potential energy evolution there

s mismatched between the actual change in energies and those
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experienced by the discretized Navier–Stokes equations. The pro-

posed energy–corrected formulation does not have this mismatch

and as such has a guaranteed decay of energy. Furthermore, the

novel method requires a significantly smaller amount of grid points

compared to the convective formulation. These observations indi-

cate the importance of correct energy behavior in two-fluid flow

simulations. We believe that the large accuracy gain of the new

method outweighs its additional implementation effort. 

The current formulation is based on a Galerkin formulation and

is therefore only suitable for low Reynolds number flows. Current

work concerns the development of a two-fluid stabilized formu-

lation suitable for the computation of high-Reynolds-number flow

problems. 
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Appendix A. Quasi–Newton algorithm 

For clarity a step-by-step description of the routine sketched in

the previous section is given here. The routine describes how the

solution at a new time step, u 

n +1 , p n +1 , φn +1 is obtained from the

solution at the current time step, u 

n , p n , φn . 

The algorithm reads: 

1. Start: u 

n , p n , φn . 

2. Initialize the solution: 

u 

n +1 = u 

n , 

p n +1 = p n , 

φn +1 
0 = φn . (A.1)

3. Initialize the perturbations and the Lagrange multipliers: 

φn +1 
i 

= 0 , i = 1 , 2 , 3 (A.2)

λi = 0 , i = 1 , 2 , 3 . (A.3)

4. Assemble the right-hand side of (57) by evaluating the residuals

given by Eqs. (25) and (56) . 

5. Compute the global norm of the residuals: ‖ R ‖ 2 = ‖ R u ‖ 2 +
‖ R p ‖ 2 + ‖ R φ‖ 2 + ‖ R φ1 

‖ 2 + ‖ R φ2 
‖ 2 + ‖ R φ3 

‖ 2 . 
6. Check convergence: if ‖ R ‖ < ε1 ‖ R ‖ ref then go to step 12. 

7. Assemble the matrix given in (57) by evaluating the Jacobians

of (25) and (56) . 

8. Solve the linear problem given in (57) . 

9. Update the solution: 

u 

n +1 = u 

n +1 + �u , (A.4)

p n +1 = p n +1 + �p, (A.5)

φn +1 
0 = φn +1 

0 + �φ0 , (A.6)

φn +1 
i 

= φn +1 
i 

+ �φi , i = 1 , 2 , 3 . (A.7)

0. Solve the nonlinear system (58) : 

(a) Assemble the right-hand side by evaluating (58) . 

(b) Compute norm and check convergence: ∑ 

h 

2 
i < ε2 

2 (A.8)
i =1 , 2 , 3 
(

(c) Assemble the matrix by evaluating the Jacobian of (58) . 

(d) Solve the linear problem using a direct solver. 

(e) Update the solution: 

λi = λi + �λi , i = 1 , 2 , 3 . (A.9)

1. Go to step 4. 

2. Update the level-set variables: 

φn +1 = φn +1 
0 + 

∑ 

i =1 , 2 , 3 

λi φ
n +1 
i 

, (A.10)

φn +1 
i 

= 0 , i = 1 , 2 , 3 . (A.11)

3. Finish: u 

n +1 , p n +1 , φn +1 . 

he residual norm of the first iteration is used as the reference

esidual norm ‖ R ‖ ref . The convergence tolerances are typically

aken as ε1 = 10 −3 and ε2 = 10 −12 . Note that ε1 is a relative tol-

rance and that ε2 is an absolute tolerance. 

ppendix B. Standard convective discretization 

Here we present the standard convective discrete formulation

hich serves as a benchmark method. The convective form in

trong form follows when applying the incompressibility constraint

n the momentum equation: 

 t (ρu ) + ρu · ∇u + ∇p − ∇ · 2 μ∇ 

s u = ρg , (B.1a)

 · u = 0 , (B.1b)

 t ρ + u · ∇ρ = 0 . (B.1c)

Using this strong form the standard discrete formulation in con-

ective form with mass conservation reads: 

Find u 

n +1 ∈ U , p n +1 ∈ P, φn +1 ∈ H 

1 (�) and λ1 ∈ R such that for

ll w ∈ U , q ∈ P, ψ ∈ H 

1 (�) , 

w , ρn +1 / 2 u 

n +1 − u 

n 

�t 

)
+ (w , ρn +1 / 2 u 

n +1 / 2 ∇u 

n +1 / 2 ) 

− (∇ · w , p n +1 ) + (∇w , 2 μ∇ 

s u 

n +1 / 2 ) = (w , ρn +1 / 2 g ) , (B.2a)

(q, ∇ · u 

n +1 / 2 ) = 0 , (B.2b)

ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)

+ 

(
τu 

n +1 / 2 · ∇ψ, 
φn +1 − φn 

�t 
+ u 

n +1 / 2 · ∇φn +1 / 2 

)
+ λ1 

(
1 , ∂ φρ ψ 

)
= 0 , (B.2c)

(1 , ρn +1 − ρn ) = 0 , (B.2d)

here U = { u ∈ [ H 

1 (�)] d ; u · n = 0 } and P = { p ∈ L 2 (�) ; ∫ 
pd� =

 } . The stabilization parameter and fluid parameters are defined

he same way as in Section 3.3 . Hence the stability parameter is

iven by Eq. (26) and the fluid parameters are given in (24) and

28). 

http://dx.doi.org/10.13039/501100001831
http://dx.doi.org/10.13039/100006227
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