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Highlights

• Two stabilized finite element methods that have correct energy behavior are proposed.
• These methods use (i) dynamic small-scales and (ii) dynamic orthogonal small-scales.
• The demand for correct energy behavior creates a link between VMS, GLS and SUPG.
• Dissipation due to small-scales in classical stabilized methods can be negative.
• The proposed GLSD and DO methods rectify this discrepancy without loss of accuracy.
• The methodology can be generalized to the incompressible Navier–Stokes equations.

Abstract

This paper presents the construction of novel stabilized finite element methods in the convective–diffusive context that exhibit
correct-energy behavior. Classical stabilized formulations can create unwanted artificial energy. Our contribution corrects this
undesired property by employing the concepts of dynamic as well as orthogonal small-scales within the variational multiscale
framework (VMS). The desire for correct energy indicates that the large- and small-scales should be H1

0 -orthogonal. Using this
orthogonality the VMS method can be converted into the streamline-upwind Petrov–Galerkin (SUPG) or the Galerkin/least-squares
(GLS) method. Incorporating both large- and small-scales in the energy definition asks for dynamic behavior of the small-scales.
Therefore, the large- and small-scales are treated as separate equations.

Two consistent variational formulations which depict correct-energy behavior are proposed: (i) the Galerkin/least-squares
method with dynamic small-scales (GLSD) and (ii) the dynamic orthogonal formulation (DO). The methods are presented in
combination with an energy-decaying generalized-α time-integrator. Numerical verification shows that dissipation due to the small-
scales in classical stabilized methods can become negative, on both a local and a global scale. The results show that without loss
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of accuracy the correct-energy behavior can be recovered by the proposed methods. The computations employ NURBS-based
isogeometric analysis for the spatial discretization.
c⃝ 2017 Elsevier B.V. All rights reserved.

Keywords: Correct-energy behavior; Stabilized finite element methods; Isogeometric analysis; Dynamic orthogonal small-scales; Residual-based
variational multiscale method

1. Introduction

Stabilized methods and multiscale formulations form an auspicious, versatile and fundamental class of methodolo-
gies for finite element computations. The classical Galerkin variational formulation depicts correct-energy behavior
although it has limitations concerning accuracy and stability. The popular stabilized methods, i.e. the Streamline
upwind Petrov–Galerkin method (SUPG) [1], the Galerkin/least-squares method (GLS) [2], and the variational
multiscale method (VMS) [3,4], overcome these issues, however show incorrect-energy behavior. In this paper we
focus on convection–diffusion which serves as a model problem for more complex flow problems and turbulence.

This work is devoted to the construction of a new stabilized finite element method displaying correct-energy
behavior. Correct-energy behavior (or evolution) in a numerical method represents here that the method (i) does not
create artificial energy and (ii) closely resembles the energy evolution of the continuous setting. A precise definition
is included in Section 4.

Our contribution fixes the incorrect energy deficiency by combining several ingredients. These are the dynamic and
orthogonal behavior of the small-scales emerging from the stabilized methods, also referred to as dynamic orthogonal
small-scales, within the framework of isogeometric analysis.

1.1. Dynamic small-scales

In our quest for a correct-energy displaying formulation we learn that it is essential to use the so-called dynamic
small-scales (also referred to as transient small-scales). This approach models the small-scales dynamically, i.e. with
an ordinary differential equation in time, and takes its temporal contribution to the large-scale equation into account.
This concept has originally been proposed by Codina in [5] and has been further analyzed in [6].

1.2. Orthogonal small-scales in VMS

The multiscale stabilization method based on orthogonal small-scales serves as the next key ingredient of our
approach. We link our choice of orthogonal small-scales to an optimality projector induced by the H 1

0 -seminorm.
This produces a highly attenuated and localized small-scale Green’s function, which is very desirable property [7].
We combine this methodology with residual-based variational multiscale modeling, a concept which emanates from
VMS. The VMS approach finds many applications in incompressible turbulence, see e.g. [8–13], and free surface
flow [12,14]. Possible new directions in stabilized and multiscale methods are suggested in [15].

1.3. Isogeometric analysis framework

In addition, we employ the isogeometric analysis (IGA) methodology, proposed by Hughes et al. in [16], which
finds recent applications in various fields of science, see e.g. [14,17,18]. IGA is an effort to close the gap between
on one hand Computer-Aided Design (CAD) and on the other Computer-Aided Engineering (CAE). Finite element
analysis (FEA) and CAD use a different representation for the geometry which makes a geometry update unpleasant
and time-consuming. IGA corrects this deficiency by employing the same NURBS (non-uniform rational B-splines)
geometry description as in CAD. This means that the NURBS surfaces in IGA match with the exact CAD geometry,
in contrast to FEA where the basis functions form an approximation of the CAD geometry. IGA leads to higher-
order and higher-continuity discretizations on complex domains. Our choice for IGA is additionally motivated by
the second derivatives in the weak formulations. This requires C1-continuity of the basis functions. Furthermore,
one of the main advantages of using the IGA methodology is that it guarantees the incompressibility constraint to
hold exactly [19,20]. This is a highly favorable property when the velocity field is not given, e.g. in case of the
incompressible Navier–Stokes equations.
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1.4. Context

The methodology is presented in the convective–diffusive model context which serves as a first step of this novel
approach. The procedure is developed with the incompressible Navier–Stokes equations in mind which is the next
step of this approach and is in itself presented in the sequel paper. In the context of stabilized methods a two-step
approach, development for linear convection–diffusion followed by incompressible Navier–Stokes, is more common,
see e.g. [21–25].

In the context of two-fluid flow phenomena, many numerical methodologies can unfortunately artificially create
energy at the two-fluid interface. Even a small energy-inconsistency at the fluid surface can already lead to highly
unstable behavior as is demonstrated in [26]. To rectify this discrepancy, each of the components of the algorithm
requires correct-energy behavior. When numerically solving air–water flow usually the components are (i) a standard
incompressible Navier–Stokes solver and (ii) an algorithm describing the evolution of the air–water interface. Apart
from its shared features with the incompressible Navier–Stokes equations, the convective–diffusive context is also
required for the (level set) algorithm describing the evolution of the two-fluid interface.

1.5. Outline

The remainder of this paper is dedicated to the actual construction of a stabilized variational formulation which
depicts correct-energy behavior and is summarized as follows. Section 2 states the continuous form of the governing
convection–diffusion equations, both in the strong form and in the weak form. The energy evolution linked to this
formulation follows from the corresponding mixed-formulation which is derived with a Lagrange multiplier approach.
Before proposing changes to existing stabilized methods, we introduce and discuss the energy evolution of the existing
stabilized methods. Therefore, Section 3 discusses the energy evolution in the standard VMS stabilized method with
static small-scales. Section 4 presents our quest towards a stabilized formulation depicting correct-energy behavior. It
adds the two concepts (i) the dynamic behavior of the small-scales and (ii) the optimality projector yielding the vital
orthogonality of the small-scales to the VMS formulation. Invoking the optimality projector in different ways leads
to the other well-known stabilized formulations, namely SUPG and GLS. In Section 5 the demanded orthogonality
between the small- and large-scales is enforced by the proper H 1

0 -optimality projector. This yields an alternative
variational multiscale stabilized formulation with correct-energy evolution. Furthermore, the methods demand a time-
integrator which is correctly linked to an energy. Therefore, we re-address the generalized-α time-integration method.
The energy demand leads to a certain parameter family of the time-stepping parameters. Section 6 discusses this
temporal-integration method. Section 7 presents numerical verification while employing NURBS basis functions for
the computations. In Section 8, we draw conclusions and outline avenues for future research.

2. The continuous convection–diffusion equation

2.1. Strong formulation

Let Ω denote the spatial domain with boundary Γ = Γg ∪ Γh , see Fig. 1.
The governing equations of the convection–diffusion problem in strong form read

∂tφ + a · ∇φ − ∇ · κ∇φ = f in Ω × I, (1a)

φ = g in Γg × I, (1b)

− a−

n φ + κ∂nφ = h in Γh × I, (1c)

φ(x, 0) = φ0(x) in Ω , (1d)

where t ∈ I = (0, T ) is the time with final time T > 0, x ∈ Ω the spatial coordinate, φ = φ(x, t) : Ω × I the
dependent variable with time derivative ∂tφ, normal flux ∂nφ = n · ∇φ and f : Ω × I → R, g : Γg × I → R,
h : Γh × I → R and φ0 : Ω → R are prescribed data. The convective velocity a = a(x) is a given solenoidal vector
field (∇ · a = 0) and κ ≥ 0 denotes the given diffusivity. The outward unit normal to Γ is n and the normal velocity
component denotes an = a · n with positive and negative parts a±

n =
1
2 (an ± |an|).
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Fig. 1. Spatial domain Ω with its boundaries Γ = Γg ∪ Γh .

2.2. Weak formulation

Let W0 and Wg denote suitable function-spaces satisfying the homogeneous and non-homogeneous Dirichlet
conditions, respectively. Using these spaces the standard weak formulation of the problem reads as follows:

Find φ ∈ Wg such that for all w ∈ W0,

(w, ∂tφ)Ω + (w, a · ∇φ)Ω −
(
w, a−

n φ
)
Γh

+ (∇w, κ∇φ)Ω = (w, f )Ω + (w, h)Γh . (2)

Here (·, ·)D denotes the L2(D) inner product over D. Consistency of the strong (1) and the weak formulation (2) easily
follows from applying integration by parts on the diffusive term.

Instead of enforcing the Dirichlet boundary conditions a priori, it is also possible to relax this condition in the
function space by employing a Lagrange multiplier setting. The weak statement translates into a mixed formulation:

Find (φ, λΩ ) ∈ W × V such that for all (w, q) ∈ W × V ,

(w, λΩ )Γg = (w, ∂tφ)Ω + (w, a · ∇φ)Ω −
(
w, a−

n φ
)
Γh

+ (∇w, κ∇φ)Ω − (w, f )Ω − (w, h)Γh , (3a)

(q, φ)Γg = (q, g)Γg . (3b)

Here W represents the unrestricted function space and V is a suitable Lagrange multiplier space. Consult [27,28] for
the appropriate construction of the spaces. The following section employs this formulation to derive energy statements.

Applying an appropriate choice of weighting functions w and q in (3) and subsequently performing a partial
integration step recovers the strong form (1). Additionally, the expression for the Lagrange multiplier follows as a
complimentary result

λΩ = κ∂nφ, (4)

and equals the diffusive flux. Note that the continuous setting allows us to provided a closed form of the Lagrange
multiplier. This does not hold in a discrete setting. Furthermore, the subscript in the notation of the Lagrange multiplier
is added for consistency with Section 2.4.

2.3. Global energy evolution

The evolution of the energy linked to the strong form (1) follows from choosing w = φ and q = λ in the mixed
formulation (3). Subtracting the resulting equations yields

(φ, ∂tφ)Ω + (∇φ, κ∇φ)Ω + (φ, a · ∇φ)Ω −
(
φ, a−

n φ
)
Γh

= (g, λΩ )Γg + (φ, f )Ω + (φ, h)Γh . (5)

By performing integration by parts on the interior convective term and employing the divergence-free constraint, the
convective term turns into a boundary term. The energy, defined as EΩ =

1
2 (φ, φ)Ω , evolves as

d
dt

EΩ = −∥κ1/2
∇φ∥

2
Ω + (φ, f )Ω − (1, FΩ )Γ , (6)
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Fig. 2. Spatial domain Ω with a subdomain ω ⊂ Ω . The shared boundary of ω and its complement is χω . The boundaries Γg and Γh split according
to ω.

where ∥ · ∥D defines the standard L2-norm over D. The conservative energy flux provides a different contribution on
each segment of the boundary:

FΩ =

⎧⎨⎩ane − gλΩ on Γg,

|an|e − φh on Γh,

0 elsewhere,
(7)

with e :=
1
2φ2 the pointwise energy. The terms on the Dirichlet boundary are (i) the amount of energy flowing in and

out by convection and (ii) the energy gained and lost by diffusion through the boundary, respectively. On the other
boundary, the terms represent (i) the energy loss by the strict convective outflow and (ii) the energy change by the flux
boundary condition. The energy can only increase as a result of the prescribed body force or the boundary conditions,
represented by the last two terms on the right-hand side of (6). The diffusive term, when active, contributes to a decay
of the energy. The last term on the right-hand side of (6) represents the convective and diffusive fluxes of energy
across the interface. Substitution of the boundary condition and the Lagrange multiplier (again possible because of
the continuous setting) and a partial integration step leads to the alternative expression of the flux

FΩ = ane − κ∂ne. (8)

The two terms respectively describe the convective and viscous-driven flow of energy.

2.4. Localized energy evolution

This section presents a localized version of (6) for arbitrary subdomains ω ⊂ Ω with boundary ∂ω. The
complement domain denotes Ω − ω with boundary ∂(Ω − ω) and the shared boundary of the both subdomains is
χω := ∂ω ∩ ∂(Ω − ω). Fig. 2 shows the domain with its boundaries.

The variational statement consists of the weak formulation (3) enforced on the subdomain ω and is again augmented
with a Lagrange multiplier that enforces the Dirichlet boundary condition. The unrestricted solution space Wω allows
discontinuities across the subdomain interface and the space of suitable Lagrange multipliers denotes Vω. The weak
statement reads:

Find (φ, λω) ∈ Wω × Vω such that for all (w, q) ∈ Wω × Vω,

(w, λω)χω + (w, λω)Γg (ω) = (w, ∂tφ)ω + (∇w, κ∇φ)ω + (w, a · ∇φ)ω

−
(
w, a−

n φ
)
Γh (ω) − (w, f )ω − (w, h)Γh (ω), (9a)

(qh, [φh])χω + (q, φ)Γg (ω) = (q, g)Γg (ω), (9b)

where Γg(D) := Γg ∩ ∂ D and Γh(D) := Γh ∩ ∂ D for domain D. The jump term [φh] is given by

[φh] := φh
ω − φh

Ω−ω, (10)
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where the terms are defined on ω and Ω − ω, respectively. The Lagrange multiplier can be interpreted as an auxiliary
flux across the interface χω, it represents the flow outward ω. The weak form of the complement domain easily follows
by replacing ω by Ω − ω in (9). The superposition of the both formulations leads to the balance

λω + λΩ−ω = 0. (11)

Thus that what flows out of ω enters in Ω − ω. See [27] for the formal details of such a derivation. Again, a partial
integration step provides the expression for the Lagrange multipliers:

λω = κ∂nωφ, (12a)

λΩ−ω = κ∂nΩ−ω
φ, (12b)

with ∂nD the directional derivative outward of a domain D. The local energy statement follows when choosing w = φ

and q = λω, this yields

(φ, λω)χω + (g, λω)Γg (ω) = (φ, ∂tφ)ω + ∥κ1/2
∇φ∥

2
ω + (φ, a · ∇φ)ω

−
(
w, a−

n φ
)
Γh (ω) − (φ, f )ω − (φ, h)Γh (ω). (13)

By applying integration by parts on the convective term we find that the energy on subdomain ω evolves as

d
dt

Eω = −∥κ1/2
∇φ∥

2
ω + (φ, f )ω − (1, Fω)∂ω, (14)

where the outward energy flux now splits into three parts

Fω =

⎧⎪⎪⎨⎪⎪⎩
anωe − gλω on Γg(ω),
|anω |e − φh on Γh(ω),
anωe − φλω on χω,

0 elsewhere.

(15)

In comparison with global energy behavior, the additional last term represents an energy flux, with a convective
and diffusive component, across the subdomain interface χω. Again, substitution of the boundary condition and the
Lagrange multiplier and a partial integration step leads to

Fω = anωe − κ∂nωe on ∂ω. (16)

Remark

This section provides all the statements in a continuous form. A direct consequence is that the standard discrete
setting, the Galerkin method, displays correct-energy behavior.

This paper now presents the energy evolution of standard stabilized methods and subsequently constructs a
methodology that closely resembles the local energy evolution of the continuous equation. In particular, the design of
the method precludes artificial local energy creation.

Remark

To increase the readability of this paper we now restrict ourselves to boundary conditions precluding the energy
flux F on Γ . This occurs for example when employing homogeneous Dirichlet and periodic boundary conditions. The
proposed methodology can easily be generalized to domains with non-homogeneous boundaries.

3. Energy evolution of the variational multiscale approach

This section concerns the energy evolution in the stabilized residual-based variational multiscale (RBVMS)
formulation. Therefore we start off with a brief recap of the canonical VMS method.
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3.1. The multiscale split

The residual-based variational multiscale approach emanates, as the name suggests, from the theory of the
variational multiscale methods. This approach explicitly treats the solution component not be represented by the
discretization in an approximate sense. This is done as follows. The trial solution and weighting function spaces split
as

W = Wh
⊕ W ′, (17)

where Wh is the space spanned by the finite-dimensional discretization and W ′ is its infinite-dimensional complement
in W . Based on the multiscale split in the space the components of the solution and weight decouple as

φ = φh
+ φ′,

w = wh
+ w′, (18)

with φh, wh
∈ Wh and φ′, w′

∈ W ′ the large-scales and the small-scales solution and weight, respectively. The
small-scale space W ′ represents the component of W not reproduced by the grid and is therefore also called space
of fine-scales, sub-scales or subgrid-scales.1 In order to obtain a well-defined decomposition for a given v ∈ W ,
the elements vh

∈ Wh, v′
∈ W ′ with v = vh

+ v′ require a unique definition. Employing an optimality projector
Ph

: W → Wh for the decoupling as2 :

vh
= Phv,

v′
=

(
I − Ph) v, (19)

achieves uniqueness. Here I : W → W is the identity operator. Using this multiscale split we arrive at the following
alternative – equivalent – weak statement:

Find φh
∈ Wh, φ′

∈ W ′ such that for all wh
∈ Wh, w′

∈ W ′,

(wh, ∂tφ
h
+ a · ∇φh)Ω + (∇wh, κ∇φh)Ω + (wh, ∂tφ

′
+ a · ∇φ′)Ω + (∇wh, κ∇φ′)Ω = (wh, f )Ω , (20a)

(w′, ∂tφ
h
+ a · ∇φh)Ω + (∇w′, κ∇φh)Ω + (w′, ∂tφ

′
+ a · ∇φ′)Ω + (∇w′, κ∇φ′)Ω = (w′, f )Ω . (20b)

Note that this formulation is still exact. However, the space W ′ is infinite-dimensional and as such not amenable for a
discrete implementation.

3.2. The VMS numerical formulation

The weak formulation (20) converts into a numerical formulation when the small-scale equation (20b) is replaced
by an approximation for the small-scale solution φ′. The small-scale equation can be written in the form

(w′, ∂tφ
′
+ a · ∇φ′

− κ∆φ′)Ω = −(w′, Rφh)Ω , (21)

where the large-scale residual reads

Rφh
= ∂tφ

h
+ a · ∇φh

− κ∆φh
− f. (22)

This implies that the small-scales are driven by the residuals of the large-scales. The corresponding Euler–Lagrange
form of the small-scale equation reads

∂tφ
′
+ a · ∇φ′

− κ∆φ′
= −Rφh . (23)

Note that the Euler–Lagrange equations are in strong form, i.e. the weight w′ in (21) is ignored. This pertains to both
the small-scale solution as well as the residual forcing.

Employing a Green’s function provides an explicit expression for the small-scales. In this expression the integral
operator is approximated by an algebraic stabilization parameter τstatic. This step is necessary to arrive at an

1 The terms sub-scales or subgrid-scales could be linked to a turbulence modeling character of the approach. The current method does not fit in
that framework. To emphasize this difference we use the terminology small-scales.

2 There are infinitely many choices for the projector Ph . Linear projectors suffice for the current problem. More details can be found in
Hughes [3].
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implementable method. Details of this approximation can be found in [3]. To obtain a stabilized formulation, the
small-scales are modeled as:

φ̂′
= − τstatRφh, (24a)

∂t φ̂
′
= 0, (24b)

where τstat is a positive stabilization parameter. In the following we ignore the hat-sign. This algebraic operator
depends on both the physics and the discretization. More details can be found in Hughes and Sangalli [7].

The definition of the stabilization parameter is inspired by the theory of stabilized methods for convection–diffusion
equations (see e.g. [21,23]), and reads:

τstat =
(
τ−2

conv + τ−2
diff + τ−2

time

)−1/2
, (25)

where

τ−2
conv = a · Ga, (26a)

τ−2
diff = C I κ

2G : G, (26b)

τ−2
time =

(
αm

α f γ∆t

)2

. (26c)

Here G is the second-rank metric tensor given by

G =
∂ξ

∂x

T ∂ξ

∂x
, (27)

where ∂ξ/∂x is the inverse Jacobian of the map between the elements in the reference and physical domain. The
stabilization parameter treats deformed and curved domains naturally due to its direct dependence on G. The metric
tensor G scales as h−2 where h is the mesh size. The positive constant C I is defined by an inverse estimate. It is
independent of the mesh size and can be computed from an element-wise eigenvalue problem [29].

The definition of τtime is based on the generalized-α time-integrator given in Section 6. Here α f , αm, γ are
algorithmic time-stepping coefficients and ∆t is the time step. It reduces to the commonly used value of 4/∆t2

when employing ρ∞ = 1, see e.g. [10,11,13] (consult these references for the definition of ρ∞). This choice results
in the Crank–Nicolson time-integrator, see Section 6.2.

Employing integration by parts on the stabilized terms, the small-scales appear without derivatives. The resulting
form is the VMS stabilized statement

Find φh
∈ Wh such that for all wh

∈ Wh ,

(wh, ∂tφ
h)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω − (a · ∇wh

+ κ∆wh, φ′)Ω̃ = (wh, f )Ω , (28a)

τ−1
statφ

′
= − Rφh . (28b)

Here we have subdivided the domain Ω into elements Ωe. The domain of element interiors Ω̃ does not include the
element boundaries and reads

Ω̃ =

⋃
e

Ωe. (29)

It is important to emphasize to that we treat the small-scale expression (28b) as a separate equation. At this stage a
straightforward substitution is certainly possible, however when the small-scales are modeled dynamically, this is not
the case anymore. In line with the analysis in later sections we therefore omit substitution here.

3.3. Local energy evolution of the VMS formulation

To arrive at local energy evolution, we augment the weak formulation in Lagrange multiplier setting form to allow
discontinuous functions across subdomains, similar to (9). The weak statement reads:
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Find
(
φh, λh

ω

)
∈ Wh

ω × Vh
ω such that for all

(
wh, qh

)
∈ Wh

ω × Vh
ω,

(wh, λh
ω)χω = (wh, ∂tφ

h)ω + (wh, a · ∇φh)ω + (∇wh, κ∇φh)ω − (wh, f )ω
− (a · ∇wh

+ κ∆wh, φ′)ω̃, (30a)

(qh, [φh])χω = 0, (30b)

τ−1
statφ

′
= − Rφh . (30c)

Here ω̃ represents the domain of element interiors of ω. The discretization does not allow explicit evaluation of the
Lagrange multiplier. We select wh

= φh in the large-scale equation (30a) and add the small-scale equation multiplied
by φ′ and integrate. The resulting statement is:

(φh, ∂tφ
h)ω + (φ′, ∂tφ

h)ω̃ + ∥τ
−1/2
stat φ′

∥
2
ω̃ + ∥κ1/2

∇φh
∥

2
ω − (φh, f )ω

− (φ′, f )ω̃ − 2(κ∆φh, φ′)ω̃ +
1
2

(φh, anφ
h)χω − (φh, λh

ω)χω = 0. (31)

Here we have employed the incompressibility constraint to convert the interior convective term to a boundary term.

Remark

When the velocity field is obtained by a numerical method the incompressibility constraint is often not exactly
fulfilled though. However, by appropriately employing isogeometric analysis this can be achieved exactly [20]. Our
implementation already employs the proper IGA spaces to allow a smooth transition to the incompressible Navier–
Stokes equations.

The local large-scale energy is the energy of resolved solution: Eh
ω =

1
2

(
φh, φh

)
ω

and evolves by (31) as:

d
dt

Eh
ω = − ∥κ1/2

∇φh
∥

2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
stat φ′

∥
2
ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃ − (φ′, ∂tφ

h)ω̃, (32)

with the energy flux

Fh
ω = aneh

− λh
ωφh (33)

where the pointwise large-scale energy is eh
:=

1
2φhφh . The local total energy is defined using the superposition of

the small-scales and large-scales as: Eω =
1
2

(
φh

+ φ′, φh
+ φ′

)
ω̃

. Its evolution directly follows:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
stat φ′

∥
2
ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃ + (∂tφ

′, φh
+ φ′)ω̃. (34)

We observe from this relation that the standard static VMS formulation does not possess a desirable energy behavior.
The first line closely resembles the continuous energy evolution relation. No explicit expression for λh

ω exists. The
second line appears as a result of the stabilization terms. Its first term contributes to a decay of the energy, which
is favorable from a stability argument. It can be interpreted as the diffusive energy decay of the missing small-
scales. The last two terms are problematic. These unsymmetric terms can be bounded by both the physical diffusion
∥κ1/2

∇φh
∥

2
ω and the numerical diffusion ∥τ

−1/2
stat φ′

∥
2
ω̃

. The procedure is analogous to the standard coercivity analysis:
apply Cauchy–Schwarz and Young’s inequality subsequently. This leads to restrictions on the stabilization parameter
τstat depending on the diffusivity and the time step. More importantly, the overall diffusion of the method can be
less than the physical diffusion. Hence, the small-scales can artificially create energy, which we numerically show in
Section 7, and are therefore both numerically and physically undesirable. The next section corrects this deficiency.

Remark
The global energy evolution easily follows when substituting ω = Ω and ω̃ = Ω̃ into (34):

d
dt

EΩ = − ∥κ1/2
∇φh

∥
2
Ω + (φh, f )Ω

− ∥τ
−1/2
stat φ′

∥
2
Ω̃

+ (φ′, f )Ω̃ + 2(κ∆φh, φ′)Ω̃ + (∂tφ
′, φh

+ φ′)Ω̃ . (35)

Note the cancellation of the local energy flux.
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4. Toward a stabilized formulation with correct-energy behavior

This section presents a path with alternative stabilized formulations towards rectification of the discrepancy
indicated in the previous section. First we adopt the concept of dynamic small-scales to eliminate the unwanted
terms containing the temporal derivatives. Next, the undesirable diffusive term vanishes when employing orthogonal
small-scales with the optimality projector. This leads to other well-known stabilization formulations, namely SUPG
and GLS.

4.1. Design condition

To clarify, let us explicitly mention the design condition of the stabilized formulation which emerges from (34).
We seek for a stabilized formulation corresponding to (1) which displays local energy behavior as:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φ′, f )ω̃ − (1, Fh

ω )χω

− ∥τ−1/2φ′
∥

2
ω + (φh, f )ω. (36)

In this paper we call this correct-energy behavior. The positive scalar τ represents the stabilization parameter of the
small-scale equation and equals τ = τstatic when using static small-scales as in (24).

4.2. The variational multiscale method with dynamic small-scales

An alternative for replacing the small-scale equation with an algebraic relation is to retain the time-integration and
only model the spatial part of the operator. This leads to so-called dynamic small-scales, as introduced in [6]. The
model equation

∂t φ̂
′
+ τ−1

dynφ̂
′
= −Rφh, (37)

is now an ordinary differential equation in time. Again, we ignore the ˜ sign in the following. The time derivative in
(37) eliminates the first unwanted temporal part in the energy evolution (34). Naturally, the stabilization parameter3

now omits a temporal part, since it is explicitly handled, therefore:

τdyn =
(
τ−2

conv + τ−2
diff

)−1/2
. (38)

Clearly, the static small-scale equation (24b) does not apply anymore. Therefore, the term ∂tφ
′ is active in the large-

scale equation. The VMS stabilized formulation with dynamic small-scales now reads:
Find φh

∈ Wh such that for all wh
∈ Wh ,

(wh, ∂tφ
h
+ ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω − (a · ∇wh
+ κ∆wh, φ′)Ω̃ = (wh, f )Ω , (39a)

∂tφ
′
+ τ−1

dynφ
′
= − Rφh . (39b)

To arrive at an energy relation we adopt the same procedure as before. The total local energy linked to this
variational form evolves as:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
dyn φ′

∥
2
ω̃ + (φ′, f )ω̃ + 2(κ∆φh, φ′)ω̃, (40)

with Fh
ω defined in (33). We observe that adopting dynamic small-scales indeed eliminates the undesired temporal

terms.

4.3. Orthogonality between the large-scales and the small-scales

The other unwanted term vanishes when the large-scales and small-scales are appropriately orthogonal with respect
to each other, namely

(κ∆φh, φ′)Ω = 0. (41)
3 This explains our notation τstatic in Section 3 where static represents static small-scales.
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This defines the optimality projector (19) which links the stabilized formulation with the desired energy behavior.
Therefore we employ the natural choice for the optimality projector:

Ph
: φ ∈ W → φh

∈ Wh : Find φh
∈ Wh such that for all wh

∈ Wh ,

(κ∆wh, φh)Ω = (κ∆wh, φ)Ω . (42)

This yields the required orthogonality.

4.4. Consistent SUPG with dynamic small-scales

Employing the orthogonality (41) directly in the large-scale equation, leads to the dynamic small-scale version of
the well-known SUPG formulation:

Find φh
∈ Wh such that for all wh

∈ Wh ,

(wh, ∂tφ
h
+ ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω − (a · ∇wh, φ′)Ω̃ = (wh, f )Ω (43a)

∂tφ
′
+ τ−1

dynφ
′
= − Rφh . (43b)

Unfortunately, this removes only the contribution from the large-scale equation (39a); the contribution of the
undesirable term from the small-scale equation (39b) remains:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
dyn φ′

∥
2
ω̃ + (φ′, f )ω̃ + (κ∆φh, φ′)ω̃. (44)

The undetermined sign of the last term indicates that the formulation can still create artificial energy locally.

4.5. Inconsistent SUPG with dynamic small-scales

Instead of using the orthogonality (41) only in the large-scale equation, one can adopt it as well on the small-scales
(20b), (43b). The resulting SUPG-like formulation with dynamic small-scales reads:

Find φh
∈ Wh such that for all wh

∈ Wh ,

(wh, ∂tφ
h
+ ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω − (a · ∇wh, φ′)Ω̃ = (wh, f )Ω (45a)

∂tφ
′
+ τ−1

dynφ
′
= − ∂tφ

h
− a · ∇φh

+ f. (45b)

The energy evolution linked to this formulation,

d
dt

Eω = −∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω + (φ′, f )ω̃ − ∥τ
−1/2
dyn φ′

∥
2
ω̃, (46)

has the desired form. However, this formulation is inconsistent because the small-scales are not forced by a full
residual: the diffusive term is removed from the residual. The inconsistent character of the formulation limits the
adequacy of this formulation.

4.6. GLS with dynamic small-scales (GLSD)

Another alternative is to use the orthogonality only on the large-scale equation, now with double the magnitude.
The diffusive stabilized term does not vanish but flips sign instead. In other words the VMS formulation does not
convert to a SUPG formulation but to a GLS one. Hence, the VMS approach with the diffusive optimality projection
(41) leads to the so-called GLSD-statement (the D stands for dynamic) which reads

Find φh
∈ Wh such that for all wh

∈ Wh ,

(wh, ∂tφ
h
+ ∂tφ

′)Ω + (wh, a · ∇φh)Ω + (∇wh, κ∇φh)Ω − (a · ∇wh
− κ∆wh, φ′)Ω = (wh, f )Ω (47a)

∂tφ
′
+ τ−1

dynφ
′
= − Rφh . (47b)
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This formulation possesses the desired energy evolution:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
dyn φ′

∥
2
ω̃ + (φ′, f )ω̃. (48)

Comparing with the inconsistent SUPG formulation (45), both variational forms possess the correct-energy behavior.
However, this formulation distinguishes itself by its consistent character, i.e. the forcing term in the small-scale
equation is driven by the full residual.

Remark
An important observation is: the GLS formulation is justified in a VMS context by invoking the orthogonality

demanded for correct-energy behavior.

5. Back to a variational multiscale formulation: a stabilized form with correct-energy evolution

Section 4 justifies with orthogonality arguments a GLS-based formulation depicting correct-energy behavior. That
methodology assumes orthogonality between the large-scales and small-scales but does not actually enforce it. This
section devises an alternative VMS stabilization approach that explicitly enforces the required orthogonality.

5.1. The small-scale solution space

The weak statements of Section 4 do not explicitly mention the solution space of the small-scales. The small-scales
are effectively pointwise values, i.e. φ′

: Ω ×I → R. Section 3 reveals that the small-scales live in a properly defined
space, that is φ′

∈ W ′. The orthogonality projector (41) leads to the following definition of the small-scale space:

W ′
= W ′

H1
0

:=
{
φ ∈ W;

(
κ∆ηh, φ

)
Ω

= 0 for all ηh
∈ Wh} . (49)

Note that the projector is induced by the H 1
0 -seminorm. This function space enjoys good properties, as indicated in [7].

The discretization dependence of the stabilization parameter τ originates from the corresponding restricted Green’s
function. Consult that paper for details.

Employing the restricted solution space W ′ the dynamic VMS formulation (39) subtly modifies to
Find φh

∈ Wh, φ′
∈ W ′ such that for all wh

∈ Wh ,

(wh, ∂tφ
h)Ω + (∇wh, κ∇φh)Ω + (wh, a · ∇φh)Ω

+(wh, ∂tφ
′)Ω̃ − (a · ∇wh

+ κ∆wh, φ′)Ω̃ − (wh, f )Ω = 0, (50a)

∂tφ
′
+ τ−1

dynφ
′
+ Rφh

= 0. (50b)

The small-scale solution possesses the correct orthogonality by construction which implies the correct-energy
behavior (48).

However, the restriction of the small-scale solution in the weak form (50) is troublesome to directly convert the
weak statement into a working numerical method. This is mainly due to the infinite dimensionality of the small-scale
space W ′.

5.2. Enforced orthogonality with a Lagrange multiplier (DO formulation)

In order to avoid dealing with the restricted subspace (49), we adopt a Lagrange multiplier setting to reformulate
the problem into a mixed formulation. This opens up the search space for φ′, while an explicit constraint is added to
satisfy the required orthogonality. A Lagrange multiplier enforces this constraint. This formulation reads as follows:
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Find
(
φh, σ h

)
∈ Wh

× Wh, φ′
: Ω × I → R such that for all (wh, ηh) ∈ Wh

× Wh ,

(wh, ∂tφ
h)Ω + (∇wh, κ∇φh)Ω + (wh, a · ∇φh)Ω

+(wh, ∂tφ
′)Ω̃ − (a · ∇wh

+ κ∆wh, φ′)Ω̃ − (wh, f )Ω = 0, (51a)

∂tφ
′
+ τ−1

dynφ
′
− κ∆σ h

+ Rφh
= 0, (51b)(

κ∆ηh, φ′
)
Ω̃

= 0. (51c)

We refer to it as DO where the D and O stand for dynamic and orthogonal, respectively. Here denotes σ h the Lagrange
multiplier and ηh its associated weighting function.

Note that this formulation asks for C1-continuous basis functions because of the use of second derivatives. This
additionally motivates our choice of employing IGA.

5.3. Local energy evolution of the formulation with enforced orthogonality

We obtain the energy evolution of the proposed method in a similar fashion as before. Hence, select wh
= φh in

the large-scale equation, ηh
= σ h

+ φh in the third equation and multiply the small-scale equation by φ′. Summation
of the three equations and reordering leads to:

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω + (φh, f )ω − (1, Fh

ω )χω

− ∥τ
−1/2
dyn φ′

∥
2
ω̃ + (φ′, f )ω̃. (52)

Note that the terms originating from (51c) exactly cancel the undesired orthogonality terms and the small-scale
Lagrange multiplier term.

Remark

The separate energy evolution of the large-scales and small-scales deduces in a similar fashion as above. The
energies Eh

ω =
1
2 (φh, φh)ω and E ′

ω =
1
2 (φ′, φ′)ω̃ evolve respectively as

d
dt

Eh
ω = −∥κ1/2

∇φh
∥

2
ω + (φh, f )ω + (a · ∇φh, φ′)ω̃ − (φh, ∂tφ

′)ω̃ − (1, Fh
ω )χω , (53a)

d
dt

E ′

ω = −∥τ
−1/2
dyn φ′

∥
2
ω̃ + (φ′, f )ω̃ − (a · ∇φh, φ′)ω̃ − (φ′, ∂tφ

h)ω̃. (53b)

The first term of (53b) may be viewed as diffusion of the small-scales. The convective contributions exchange energy
between the large-scales and small-scales. It is important to emphasize that these energies do not add up to the total
local energy Eω: the cross terms are missing. Their contributions appear in both (53a)–(53b).

6. Temporal-integration

This section is devoted to the time-integration for which we adopt the generalized-α time integrator. We start off
with a brief recap of the method in a general setting, after which we discuss the use of this method for the small-scales
particularly. The reminder presents the collection of time-integrators within this framework which yields a concrete
energy evolution statement of consecutive time levels.

6.1. The generalized-α time integrator

We employ the generalized-α method for the temporal-integration [30]. The algorithm reads:
Given the data φn, φ̇n , find φn+α f , φ̇n+αm , φn+1, φ̇n+1 such that

φ̇n+αm = G(φn+α f ), (54a)

φn+1 = φn + ∆t
(
(1 − γ )φ̇n + γ φ̇n+1

)
, (54b)

φ̇n+αm = (1 − αm)φ̇n + αm φ̇n+1, (54c)
φn+α f = (1 − α f )φn + α f φn+1. (54d)
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Here ∂tφ = G(φ) is the governing ordinary differential equation, φ̇ is the discretized time derivative and the time
step size is ∆t = tn+1 − tn . The scalars α f , αm, γ are algorithmic coefficients that need to be properly selected. The
methods reduce to some of the classical time integrators for specific choices of the time-step parameters, e.g. for
α f = αm = γ = 1 to backward Euler and for α f = αm = γ =

1
2 to Crank–Nicolson. It is unconditionally stable if

αm ≥ α f ≥
1
2 (i.e. when it is more implicit than explicit). The second-order accuracy requirement reads [30,31]:

γ =
1
2

+ αm − α f . (55)

6.2. Time-integration of the small-scales

The small-scale equations are ordinary differential equations. Employing (37) for (54a) an explicit solution of
system (54) directly follows

φ̇′

n+1 = C
(

−
1

γ∆t
φ̇′

n

(
1 − αm + (1 − γ )α f

∆t
τdyn

)
−

1
τdynγ∆t

φ′

n −
Rh

n+α

γ∆t

)
, (56)

with constant C = α−1
f

(
τ−1

time + τ−1
dyn

)−1
.

When using dynamic small-scales, the stabilizing properties of the weak formulation depend on the relation
between the small- and the large-scales. This relation also enters in the Jacobian of the weak formulation. To this
purpose we now explore this link. Let us define the so-called effective stabilization parameter as follows

τeff = −

∂φ′
n+α f

∂Rh
n+α

, (57)

inspired by (24a). In the case of static small-scales, depicted in (24), the trivial expression yields

τeff = τstat =

(
τ−2

time + τ−2
dyn

)−1/2
. (58)

When employing dynamic subscales as in (56), we get

τeff = −

∂φ′
n+α f

∂Rh
n+α

= −

∂φ′
n+α f

∂φ′

n+1
·
∂φ′

n+1

∂φ̇′

n+1

·
∂φ̇′

n+1

∂Rh
n+α

= α f · γ∆t ·
C

γ∆t
=

(
αmα−1

f γ −1∆t−1
+ τ−1

dyn

)−1
=

(
τ−1

time + τ−1
dyn

)−1
, (59)

from which our definition of τtime is inspired:

τtime :=
α f γ∆t

αm
. (60)

The effective stabilization parameter τeff is very similar to τstat and shows the same asymptotic behavior. This
modification of stabilization parameter effectively constitutes a change in the so-called r-switch [32] from r = 2
to r = 1. The r-switch is a smooth approximation of the minimum operator. A high value of the integer r indicates a
sharp switch. In fact, when the stabilization parameters are defined with the r-switch of r = 1:

τ̃stat =
(
τ−1

conv + τ−1
diff + τ−1

time

)−1
, (61a)

τ̃dyn =
(
τ−1

conv + τ−1
diff

)−1
, (61b)

the effective stabilization parameters would be identical.

6.3. Proper energy evolution

The energy evolution equations (48) or (52) reveal a (global) guaranteed energy decay in the absence of external
forcing and boundaries, namely,

d
dt

EΩ = −∥κ1/2
∇φh

∥
2
Ω − ∥τ

−1/2
dyn φ′

∥
2
Ω̃

. (62)
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The time-integrator should obey this decaying property. Moreover, ideally it leads to a guaranteed decay of energy for
consecutive time levels, that is,

En+1 ≤ En. (63)

To arrive at an appropriate energy statement when employing the generalized-α method the procedure reads as follows.
Multiply the small-scale equation with φ′

n+α f
, integrate the result and add it to the weak form in which wh

= φh
n+α f

is selected. The continuous form of this approach has been demonstrated before in this paper, see e.g. Section 3.3.
This leads to the correct symmetric inner products for the spatial terms, and proper norms therefore. Additionally, the
temporal terms, leading to the energy derivatives yield,

∆E = ∆t Ėn+α = ∆t(φn+α f , φ̇n+αm )Ω , (64)

where Ėn+α is the temporal derivative of the energy at time level n+α and φ = φh
+φ′. The abuse of notation demands

the integration to be interpreted on Ω̃ for terms containing the small-scales. In the following we derive time-stepping
parameters within the generalized-α time integrator framework which link this temporal term to a proper energy
behavior.

Substitution of (54b)–(54d) into (64) yields:

∆t Ėn+α = ∆t(φn+α f , φ̇n+αm )Ω
= ∆t((1 − α f )φn + α f φn+1, (1 − αm)φ̇n + αm φ̇n+1)Ω

= ((1 − α f )φn + α f φn+1,

(
1 −

αm

γ

)
∆t φ̇n +

αm

γ
(φn+1 − φn))Ω

= −
(1 − α f )αm

γ
(φn, φn)Ω +

α f αm

γ
(φn+1, φn+1)Ω + (1 − 2α f )

αm

γ
(φn, φn+1)Ω

+

(
(1 − α f )φn + α f φn+1,

(
1 −

αm

γ

)
∆t φ̇n

)
Ω

. (65)

The last term is precarious. The sign of the temporal derivative φ̇n is not determined. It appears without (n + 1)-
counterpart which leads to an uncontrollable last term. We remedy this issue by requiring the last term to vanish. This
occurs when αm = γ . Following this road, the temporal term becomes

∆t Ėn+α = α f (φn+1, φn+1)Ω − (1 − α f )(φn, φn)Ω + (1 − 2α f )(φn, φn+1)Ω
= En+1 − En +

(
α f −

1
2

) [
(φn+1, φn+1)Ω − 2(φn+1, φn)Ω + (φn, φn)Ω

]
= En+1 − En + (α f −

1
2

)∥φn+1 − φn∥
2
Ω

= En+1 − En + ∆t2(α f −
1
2

)∥φ̇n+αm ∥
2
Ω (66)

where the last equality is a direct consequence of (54) with αm = γ . Henceforth, by combining this equation with
(52) the discretized energy (of the DO form) satisfies

En+1 − En

∆t
+ ∆t(α f −

1
2

)∥φ̇n+αm ∥
2
Ω = − ∥κ1/2

∇φh
n+α f

∥
2
Ω + (φh

n+α f
, f )Ω

− ∥τ
−1/2
dyn φ′

n+α f
∥

2
Ω̃

+ (φ′

n+α f
, f )Ω̃ . (67)

The trivially equivalent form

En+1 = En − ∆t2(α f −
1
2

)∥φ̇n+αm ∥
2
Ω − ∆t∥κ1/2

∇φh
n+α f

∥
2
Ω − ∆t∥τ−1/2

dyn φ′

n+α f
∥

2
Ω̃

+ ∆t(φh
n+α f

, f )Ω + ∆t(φ′

n+α f
, f )Ω̃ (68)

reveals that a decay of the discretized energy is guaranteed when, in absence of forcing, additionally α f ≥
1
2 . The

first term on the right-hand side, which again should be interpreted on Ω̃ for the small-scales, is numerical diffusion
which vanishes for α f =

1
2 . Hence, the parameter family α f ≥

1
2 , αm = γ , which includes the Crank–Nicolson

time-integrator, can be linked to a proper energy decay. Notice that for α f =
1
2 the stability constraint is fulfilled and

the second-order accuracy condition (55) is not harmed.
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7. Numerical verification

This section provides the numerical verification of the proposed variational formulations of Sections 3–5 on a
model problem. We focus on the energy behavior on both a global and a local level. First, the energy behavior
is assessed verifying the overall performance of the newly proposed methods. Next, we zoom in on the effect of
the small-scales on the energy dissipation. We assess its global evolution and local distribution and examine the
contributions of the unwanted terms.

7.1. Model problem description

The problem under consideration is convection skew to the mesh on a 1 × 1-domain with periodic boundaries. The
velocity is a = (1, 1), therefore the profile loops once through the mesh and arrives at its start position at t = 1.0. The
diffusivity is set to κ = 5 × 10−4. No external forcing is applied. The initial condition is a sharp block of the form:

φ0(x) = H (|x −
1
2 |)H (|y −

1
2 |), (69)

H (z) =

{
1 z < l
0 l < z, (70)

where l is a specified length. For the discretization we employ NURBS.4 Linear NURBS are not considered as they
would eliminate the diffusive stabilization term (κ∆φh, φ′)Ω and hence the stabilized forms (SUPG, VMS and GLS)
coincide. All our implementations use quadratic NURBS to bypass this effect. The sharpest profile that can be exactly
represented on the mesh has the form:

φ0(x) = Ĥ (|x −
1
2 |)Ĥ (|y −

1
2 |), (71)

Ĥ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 z < l0

1 −
(z − l0)2

2h2
c

l0 < z < l1

(l2 − z)2

2h2
c

l1 < z < l2

0 l2 < z,

(72)

where l0, l1 and l2 are specified lengths of the different segments that have to coincide with mesh lines. We will use
16 × 16, 32 × 32 and 64 × 64-element meshes. As we want to verify the behavior of the method itself and not
consider the error in representing the initial condition we use the exact same initial condition on all meshes. This is
in this case the initial condition of the 16 × 16-element mesh. Therefore we choose l0 = nhc, l1 = (n + 1)hc and
l2 = (n + 2)hc with n = 2 and hc =

1
16 .

The implementations use the energy-conserving time-integrator of Section 6 with α f =
1
2 motivated by both the

second-order temporal accuracy and the stability. All computations use a CFL number of 0.5. Fig. 3 shows the profile
traveling through the mesh from t = 0 until t = 1.0. The profile exits the mesh approximately halfway during the
simulation (at t = 0.5) and enters at the opposite corner due to the periodic boundary conditions.

In the following we present energy evolution results for three different methods: (i) the SUPG method with static
small-scales (SUPGS), (ii) the GLS method with dynamic small-scales (GLSD) and (iii) the dynamic orthogonal
formulation (DO). These were chosen because the last two exhibit the correct-energy behavior, while SUPG with static
small-scales is the classical approach and serves as a reference. It turns out that all methods with static small-scales
show very similar behavior.

7.2. Overall energy behavior

Fig. 4 displays the energy behavior for various methods on different meshes. It shows convergence of the energy
evolution for each one of the methods. For the SUPGS we have two alternative energy definitions, i.e. one based on
only the large-scales and one based on both large- and small-scales (denoted as total energy). The energy behavior on

4 Note that the quadratic NURBS reduce to B-splines on our uniform Cartesian mesh.
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(a) t = 0.0. (b) t = 0.25.

(c) t = 0.625. (d) t = 1.0.

Fig. 3. Time evolution of the block profile convected through the mesh.

the 16 × 16-mesh is not converged yet whereas the energy on the 32 × 32-mesh already closely follows that of the
finer meshes. In the following we study in more detail the energy evolution on a 32 × 32-mesh. At this stage there is
no visible difference between these solutions.

7.3. Energy dissipation by the small-scales

Here we study the effect of the small-scales on the energy dissipation. The choice α f = αm = γ =
1
2 removes the

effect of the time-integrator on the energy dissipation. The energy evolution for SUPGS takes the form:

d
dt

Eh
ω = − ∥κ1/2

∇φh
∥

2
ω − (1, Fh

ω )χω − ∥τ
−1/2
stat φ′

∥
2
ω̃ + (κ∆φh, φ′)ω̃ − (φ′, ∂tφ

h)ω̃, (73a)

d
dt

Eω = − ∥κ1/2
∇φh

∥
2
ω − (1, Fh

ω )χω − ∥τ
−1/2
stat φ′

∥
2
ω̃ + (κ∆φh, φ′)ω̃ + (∂tφ

′, φh
+ φ′)ω̃ (73b)
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(a) SUPGS, large-scale energy. (b) SUPGS, total energy.

(c) GLSD, total energy. (d) DO, total energy.

Fig. 4. Energy evolution for various meshes: (a) the large-scale energy for SUPGS and the total energy for (b) SUPGS, (c) GLSD and (d) DO. An
overkill reference solution is added (the continuous black line).

for the large-scale energy and the total energy respectively. The GLSD method and the DO formulation show correct-
energy evolution:

d
dt

Eω = −∥κ1/2
∇φh

∥
2
ω − (1, Fh

ω )χω − ∥τ
−1/2
dyn φ′

∥
2
ω̃. (74)

The right-hand side terms are evaluated at time level n + 1/2. The last three terms of each of (73) and the last term of
(74) represent the small-scale contribution to the energy dissipation. Fig. 5 displays the evolution of the small-scale
contribution to energy dissipation on a global scale.

As anticipated GLSD and DO show positive energy dissipation. On the other hand it is clear that, when considering
the total energy, SUPGS has problematic dissipation behavior. It shows severe wiggles resulting in undershoots with
negative dissipation. However, when considering large-scale energy there seems to be no problem.

Fig. 6 shows a typical local distribution of the small-scale dissipation. These largely confirm the findings from
Fig. 5. GLSD and DO show strictly positive energy dissipation throughout the domain. For SUPGS now both energy
definitions show problems, as the dissipation becomes negative in certain parts of the domain. Hence, despite global
energy decay, local energy creation cannot be precluded.

In the following we further analyze the energy dissipation by considering the contribution of (i) the temporal terms
(the last terms on the right-hand side of (73)) and (ii) the orthogonality term (κ∆φh, φ′).

7.4. Temporal-term

Figs. 7 and 8 show the magnitude of the temporal terms for SUPGS on a global and local level, respectively. The
temporal term of the total energy has larger values than that of the global one. Both energy definitions show negative
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(a) SUPGS. (b) Total energy evolution contribution.

Fig. 5. Evolution of the small-scale contribution to energy dissipation on a global scale: (a) large-scale (Eh ) and total energy (E) for SUPG with
static small-scales, (b) total energy for the three methods.

(a) SUPGS, large-scale energy. (b) SUPGS, total energy.

(c) GLSD, total energy. (d) DO, total energy.

Fig. 6. Small-scale contribution to energy dissipation on a local scale (at t = 1.0): (a) the large-scale energy for SUPGS and the total energy for
(b) SUPGS, (c) GLSD and (d) DO.

dissipation, globally as well as locally. Hence contributions of these terms are undesirable. Comparing with Fig. 6 we
observe that the temporal has a major contribution to the small-scale dissipation in this case.

7.5. Orthogonality-term

Before continuing we would like to stress that the orthogonality term
(
κ∆φh, φ′

)
plays different roles in the

formulations. In case of SUPGS it is directly an error in the energy behavior, while for GLSD this is an error in the
assumed scale separation projector that leads to the correct behavior. Obviously, for DO the orthogonality term should
vanish.
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Fig. 7. Temporal contribution to small-scale energy dissipation on a global scale for the SUPGS method. The contributions to both the large-scale
(Eh ) and total energy (E) are displayed.

(a) Large-scale energy. (b) Total energy.

Fig. 8. Temporal contribution to small-scale energy dissipation on a local scale for the SUPGS method (at t = 1.0). The contributions to both the
large-scale and total energy are displayed.

Fig. 9. Time evolution of the global orthogonality-term (κ∆φh , φ′)Ω̃ for SUPGS, GLSD and DO.

The global and local behavior of the orthogonality term is displayed in Figs. 9 and 10 respectively. These
confirm that the orthogonality term vanishes for the DO formulation. For the other methods this is not the case. The
global orthogonality has an undetermined sign. Moreover, locally the contribution can be negative while the overall
contribution is positive.

8. Conclusions

In this work we have proposed an approach to rectify the incorrect-energy behavior of the standard stabilized
methods. To this purpose we have employed the concepts of orthogonal small-scales and the dynamic behavior of the
small-scales.
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(a) SUPGS. (b) GLSD. (c) DO.

Fig. 10. Local behavior of the orthogonality-term (κ∆φh , φ′)ω̃ (at t = 1.0) for SUPGS, GLSD and DO.

This paper takes a road through the various standard weak formulations. The standard Galerkin shows correct-
energy evolution but suffers from stability issues. Standard stabilized methods display the opposite. Starting from the
variational multiscale approach, we have formulated a design condition to step-by-step remedy the incorrect-energy
behavior. The first part towards rectification employs dynamic behavior of the small-scales and henceforth leads
to a variational multiscale approach with dynamic small-scales. Next, an orthogonality demand of the large- and
small-scales, which can be understood as a H 1

0 -projection operator, appears. This leads to several options for the
variational formulation. It links the form to, both employing dynamic small-scales, the streamline-upwind Petrov–
Galerkin method or the Galerkin/least-squares method of which the latter one, in contrast to the former one, displays
the energy behavior aimed at. Explicitly enforcing the orthogonality of the large- and small-scales returns us to the
variational multiscale framework with the correct-energy behavior.

The proposed variational formulations which depict correct-energy behavior are:

• the Galerkin/least-squares formulation with dynamic small-scales (GLSD)
• the approach with dynamic orthogonal small-scales (DO)

Numerical results show that the energy convergence of the novel methods displays very similar performance in
comparison with the existing stabilized finite element methods. However, the standard methods display both positive
and negative small-scale contributions to energy dissipation. The GLSD and the DO method do not suffer from
these deficiencies. Furthermore, the numerical results show activity of the unwanted terms in the standard stabilized
forms and confirm the enforced orthogonality of the large- and small-scales. The numerical computations have been
performed with isogeometric analysis, which is required for a solenoidal velocity field and seems a natural choice
when employing orthogonal small-scales.

This paper serves as an important first step for generalizations in other contexts. Future work will entail a
similar methodology for the incompressible Navier–Stokes equations. In particular, we are interested in turbulence
computations and applications in science and marine engineering.
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