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In this paper we propose a new acoustic-convective splitting-based numerical scheme 
for the Kapila five-equation two-phase flow model. The splitting operator decouples 
the acoustic waves and convective waves. The resulting two submodels are alternately 
numerically solved to approximate the solution of the entire model. The Lagrangian form of 
the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas 
the convective part is approximated with an upwind scheme. The result is a simple method 
which allows for a general equation of state. Numerical computations are performed for 
standard two-phase shock tube problems. A comparison is made with a non-splitting 
approach. The results are in good agreement with reference results and exact solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Compressible two-phase and two-fluid flow phenomena arise in many natural features and industrial applications. Ex-
amples are groundwater flow, surface wave impacts, oil slicks, water–air flows, shock–bubble interaction and (condensation 
induced) water hammer phenomena. The study of two-phase flow is a challenging research area which is of interest to both 
engineers and scientists.

Various models can be used to describe two-phase flows. Many of these models can be classified as two-fluid models 
or as homogeneous models. Among the two-fluid flow models, which are generally considered as the most complete, the 
model of Baer and Nunziato [1] is one of the best known. This model consists of equations for each of the two fluids’ mass, 
momentum, energy, and of an equation describing the topology of the two-fluid interface. Romenski et al. [2] proposed 
a seven-equation model for two-phase compressible flow which can be written in Baer–Nunziato form in the heat flux 
relaxation limit. Due to the complexity of the seven-equation models, linked to their large number of different waves 
[3–14], reduced models with less equations have been proposed.

The five-equation models form an important class of reduced models. The original five-equation two-phase flow model 
of Kapila et al. [15] has been derived from the two-fluid flow model of Baer and Nunziato. To study pure interface prob-
lems the model of Allaire et al. [16–18] can be used. The model of Kapila et al., describing inviscid, non-heat-conducting, 
compressible two-fluid flow, allows for mixtures. To model phase transitions, the five-equation model has been extended 
by taking temperature and chemical potential relaxation effects into account [19]. Murrone and Guillard [20] give an anal-
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ysis of the five-equation model and indicate that the five-equation model is a good approximation of the seven-equation 
two-fluid model. Kreeft and Koren [21] propose a new formulation of the five-equation model, in which the topological 
equation is replaced by an energy equation. An Osher-type approximation is used for the evaluation of the fluxes and the 
energy-exchange term in the discretized system. Ahmed et al. [22] use a central upwind scheme for the new formulation to 
study shock–bubble interaction problems. Daude et al. [17] present computations with the original five-equation model of 
Kapila et al. using an HLLC-type scheme in the context of an Arbitrary Lagrangian–Eulerian formulation.

Serious difficulties are posed by the non-conservative terms in the topology equation of the five-equation model. In 
particular, (i) approximating the term containing velocity divergence, (ii) performing shock computations with a non-
conservative model, and (iii) ensuring volume fraction positivity [23–25] is difficult. Several approaches have been suggested 
to circumvent these issues. Abgrall and Perrier [26] present, using probabilistic multiscale interpretation of multiphase flows, 
a locally conservative scheme to tackle the issues. Saurel–Petitpas–Berry [23,27] propose to relax the pressure equilibrium 
assumption and obtain a non-conservative hyperbolic six-equation model which simplifies numerical resolution. Jiang et al. 
[28] use this six-equation approach with a novel mass transfer between liquid and vapor.

The aim of the present paper is to propose an acoustic-convective splitting-based numerical method for the five-equation 
two-phase flow model. Due to its simplicity, the original five-equation model of Kapila et al., without any relaxation or mod-
ification, is considered. Furthermore, the speed of sound of this model corresponds to the Wood speed of sound which is 
known to be in good agreement with the experimental data obtained at moderate frequencies of sound (pressure distur-
bance) in air–water mixtures. The present approach is inspired by the Lagrange-Projection-like scheme originally proposed 
for the Euler equations of gas dynamics, by Chalons et al. [29]. In this paper a method similar to that from [29] is extended 
to the full two-phase five-equation model. Related work of the authors about the splitting approach has been presented 
in [30]. Our method uses an HLLC-type scheme for the acoustic model and a classical upwind scheme for the convective 
model. Conservation of mass, momentum, energy and partial mass, as well as the positivity of the volume fraction and 
the mass fraction are ensured. The advantages of the proposed approach are (i) its simplicity, (ii) its accurate capturing 
of shock waves, and (iii) the potential to deal with low-Mach number flows. Approximate Godunov approaches and direct 
approaches may lead to inaccuracies at highly subsonic flows. By using a splitting operator these inaccuracies can be pre-
vented [29]. Furthermore, unlike Osher-type schemes [21], the current approach can deal with a general equation of state 
(just like the direct approach from [17]). A similar idea has been proposed by Huber et al. [31]. They use a compressible 
projection method with a level-set method describing the interface motion to study the interaction of an ultrasound wave 
with a bubble.

The paper is organized as follows. In Section 2 the five-equation two-phase Kapila et al. flow model is shortly rehearsed. 
The novel acoustic-convective splitting scheme is presented in Section 3. The numerical scheme is assessed for shock-tube 
problems in Section 4, and a comparison with the direct approach is made in terms of accuracy, efficiency and robustness. 
Conclusions are drawn in Section 5.

2. Two-phase flow model

The five-equation model of Kapila et al. [15] describes the dynamics of inviscid two-phase flows evolving in mechanical 
equilibrium (i.e. equilibrium of velocity and pressure is assumed across the fluid interface). The model consists of four 
balance equations for conservative quantities: two for mass (bulk mass and mass of one of the two phases), one for the 
bulk momentum and one for the bulk total energy. The fifth equation is a topological equation, of non-conservative type, 
which describes the evolution of the volume fraction. In one dimension, the governing equations read:

∂tρ + ∂x (ρu) = 0, (1a)

∂t(ρu) + ∂x

(
ρu2 + p

)
= 0, (1b)

∂t(ρE) + ∂x (ρEu + pu) = 0, (1c)

∂t(α1ρ1) + ∂x (α1ρ1u) = 0, (1d)

∂tα1 + u∂xα1 + K∂xu = 0, (1e)

where t is the time, x the spatial coordinate, ρ the mixture density, u the bulk velocity, p the pressure and E the mixture 
total specific energy. The interfacial variable K is specified later. The variable αk , k = 1, 2, represents the volume fraction 
of phase k, with the saturation constraint α1 + α2 = 1, and ρk denotes the density of phase k. In terms of separated fluid 
variables, the bulk density is given by

ρ = α1ρ1 + α2ρ2. (2)

We define the mass fraction Yk of phase k as ρYk = αkρk . The entropy equations, i.e.:

∂t(αkρksk) + ∂x(αkρksku) = 0, (3)

with sk the specific entropy of phase k, complement the model in absence of shocks [20]. All the dissipative effects are 
neglected (inviscid, non-heat conducting flow is considered) and thus it can be written as
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Dsk

Dt
= 0, (4)

with the Lagrangian derivative D/Dt := ∂t + u∂x . The total specific energy of the mixture is given by

ρE = α1ρ1 E1 + α2ρ2 E2, (5)

where the total specific energy of each of the two phases is

Ek = ek + 1

2
u2, (6)

with ek the internal specific energy of phase k. The bulk internal specific energy is given by

ρe = α1ρ1e1 + α2ρ2e2, (7)

and hence,

E = e + 1

2
u2. (8)

In the present paper, the model is completed with the stiffened gas (SG) equation of state (EOS) for each phase:

p = ρk(ek − ηk)(γk − 1) − γkπk, (9)

where the pressure equilibrium across the interface is used. The ratio of specific heats γk , stiffness πk and energies at a ref-
erence state ηk are characteristic constants of the thermodynamic behavior of fluid k. Expression (9) reduces to the perfect 
gas (PG) EOS when πk and ηk is equal to zero whereas a large value of πk implies a near-incompressible behavior [32]. The 
SG EOS parameters are determined by shock wave Hugoniot curves [33–35]. This EOS is often used as a reasonable approx-
imation for both liquids and gases under high pressure conditions [12,13,17,21,36,37]. The EOS allows the determination of 
the speed of sound of each single phase

c2
k ≡ p − ρ2

k ∂ρk ek

ρ2
k ∂pek

= γk
p + πk

ρk
. (10)

The interfacial variable in the topology equation (1e) is given by

K =
(
ρ1c2

1 − ρ2c2
2

)
/

(
ρ1c2

1

α1
+ ρ2c2

2

α2

)
. (11)

The internal specific energy of the mixture satisfies

ρe = p

(
α1

γ1 − 1
+ α2

γ2 − 1

)
+ α1

(
γ1

γ1 − 1
π1 + ρ1η1

)
+ α2

(
γ2

γ2 − 1
π2 + ρ2η2

)
. (12)

The five-equation model (1) is hyperbolic and admits the wave speeds [20]

λ1 = u − c, λ2,3,4 = u, λ5 = u + c, (13)

with c the mixture speed of sound which obeys the Wood formula [38]:

1

ρc2
= α1

ρ1c2
1

+ α2

ρ2c2
2

. (14)

The characteristic fields associated with the eigenvalues λ2,3,4 are linearly degenerate (LD) and the other two fields are 
genuinely nonlinear (GNL) [20].

3. Numerical scheme

A novel splitting-based numerical scheme is presented, leading to two operators: one associated with the pressure and 
the other with the advection. The two submodels are referred to as acoustic and convective, respectively, in the sequel. First, 
the treatment of the acoustic submodel is discussed for which a simple and robust HLLC-type Riemann solver is used. Next, 
the upwind scheme for the convective submodel is given.
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3.1. The splitting approach

The five-equation model deals with two kinds of wave speeds associated with its eigenvalues, i.e. the GNL waves are 
linked to acoustic pressure waves whereas the LD wave is connected to the convective velocity. In certain situations such as 
subsonic flows, the ratio between these two speeds can be large, leading to inaccuracies when using approximate Godunov 
approaches. In order to decouple acoustic and convective phenomena, a splitting operator is proposed. This splitting is 
inspired by the one proposed by Chalons et al. [29] for the Euler equations of gas dynamics.

By using product-rule arguments the Kapila five-equation model (1) is split into (i) the acoustic system:

∂tρ + ρ∂xu = 0, (15a)

∂t(ρu) + ρu∂xu + ∂x p = 0, (15b)

∂t(ρE) + ρE∂xu + ∂x(pu) = 0, (15c)

∂t Y1 = 0, (15d)

∂tα1 + K∂xu = 0, (15e)

and (ii) the convective system:

∂tρ + u∂xρ = 0, (16a)

∂t(ρu) + u∂x(ρu) = 0, (16b)

∂t(ρE) + u∂x(ρE) = 0, (16c)

∂t(ρY1) + u∂x(ρY1) = 0, (16d)

∂tα1 + u∂xα1 = 0, (16e)

where the evolution of the mass fraction, Eqs. (15d) and (16d), follows from Eqs. (1a) and (1d). The corresponding entropy 
equations of the acoustic and convective systems are respectively:

∂t sk = 0, (17a)

∂t sk + u∂xsk = 0. (17b)

Basically, the splitting decouples the Lagrangian derivative terms from the remaining terms. Therefore, the convective system 
can be written as Dϕ/Dt = 0 for ϕ ∈ {ρ,ρu,ρE,ρY1,α1}. Now, the acoustic system contains all the pressure terms and the 
interfacial term of the topological equation (1e). Note that this interfacial term includes the spatial derivative of velocity 
and is therefore included in the acoustic system. The splitting step is first-order accurate in time. A higher-order temporal 
accuracy can be obtained, e.g. for second-order accuracy by employing Strang splitting [39].

The numerical solution of (1) consists of successively approximating the solution of the acoustic system and the convec-
tive system. By denoting the temporal step size with 
t , the mesh width with 
x, the fluid state at time n
t and position 
j
x with Q n

j ≡ (ρ, ρu, ρE, ρY1, α1)
n
j , and an intermediate time level with n + 1−, the approximation within one time step 

reads:

1. Update Qn
j to Qn+1−

j by time marching the acoustic system (15) with step size 
t;

2. Update Qn+1−
j to Qn+1

j by time marching the convective system (16) with step size 
t .

The choice of numerically solving the submodels in this order is linked to the velocity approximation: the velocity of 
the acoustic system is used for the determination of the convective velocity in order to ensure the conservation of mass, 
momentum, energy and partial masses as it is detailed in Section 3.6. The details of each step are given in Sections 3.3
and 3.4.

3.2. Mathematical analysis of the two submodels

The five-equation model (1) can be cast into the primitive form

∂tW + B(W)∂xW = 0, (18)

and the primitive form of the subsystems (15)–(16) reads: (i) for the acoustic system:

∂tW + A(W)∂xW = 0, (19)

and (ii) for the convective system:

∂tW + C(W)∂xW = 0, (20)
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where

B(W) = A(W) + C(W), (21)

with

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

u

p

Y1

α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A(W) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ρ 0 0 0

0 0 1/ρ 0 0

0 ρc2 0 0 0

0 0 0 0 0

0 K 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C(W) = u I5, (22)

where Id is the identity matrix in Rd×d . The derivation of the pressure equation is straightforward and can be found in 
[20,21,40]. This casting reveals that the matrix B splits into an acoustic part A and a convective part C. The eigenvalues of 
the full system (λk) split also into an acoustic part (λa

k) and a convective part (λc
k) as λk = λa

k + λc
k with

λa
1 = −c, λa

2,3,4 = 0, λa
5 = c,

λc
1 = u, λc

2,3,4 = u, λc
5 = u.

(23)

The characteristic fields associated with the convective submodel are obviously LD. Concerning the acoustic submodel, the 
fields associated with the middle wave λa

2,3,4 = 0 are LD. The other two waves, associated with λa
1 = −c, λa

5 = c, can be 
shown, by using a similar argument as Murrone et al. [20], to be GNL in the non-isobaric case and LD in the isobaric case.

3.3. Numerical solution of the acoustic submodel

3.3.1. Lagrangian formulation
Introducing the specific volume τ = 1/ρ and taking {τ , u, E, Y1,α1} as the set of variables, the acoustic system can be 

cast into the form

∂tτ − τ∂xu = 0, (24a)

∂t u + τ∂x p = 0, (24b)

∂t E + τ∂x(pu) = 0, (24c)

∂t Y1 = 0, (24d)

∂tα1 + ρKτ∂xu = 0. (24e)

Eqs. (24a)–(24c) describe the bulk fluid, and Eqs. (24d)–(24e) describe the evolution of the fraction variables, which are 
specific for the five-equation two-phase flow model. The second term of each equation (except the fourth) contains the 
operator τ∂x . As in [29], for t ∈ [tn, tn + 
t) we approximate τ (x, t)∂x by τ (x, tn)∂x , where the time level is tn = n
t with 
time step 
t . We then introduce the mass variable m by dm = ρ(x, tn)dx. The Lagrangian system

∂tτ − ∂mu = 0, (25a)

∂t u + ∂m p = 0, (25b)

∂t E + ∂m(pu) = 0, (25c)

∂t Y1 = 0, (25d)

∂tα1 + ρK∂mu = 0, (25e)

is a first-order time accurate approximation of (24). This system has the eigenvalues

(λa
1)

Lag = −ρc, (λa
2,3,4)

Lag = 0, (λa
5)

Lag = ρc (26)

and associated eigenvectors
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Fig. 1. The different states QLag
L ,QLag,∗

L ,QLag,∗
R ,QLag

R and wave speeds −a j+1/2,0,a j+1/2 in the Riemann problem.

(va
1)

Lag =

⎛
⎜⎜⎜⎜⎝

−1
−ρc
(ρc)2

0
ρK

⎞
⎟⎟⎟⎟⎠ , (va

2)
Lag =

⎛
⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎠ , (va

3)
Lag =

⎛
⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎠ , (va

4)
Lag =

⎛
⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎠ , (va

5)
Lag =

⎛
⎜⎜⎜⎜⎝

−1
ρc

(ρc)2

0
ρK

⎞
⎟⎟⎟⎟⎠ . (27)

It can be written in the following vectorial form:

∂tQLag + ∂mFLag(QLag) + BLag
(

QLag
)

∂mu = 0, (28)

where

QLag = (τ , u, E, Y1,α1)
T , (29a)

FLag(QLag) = (−u, p, pu,0,0)T , (29b)

BLag(QLag) = (0,0,0,0,ρK )T . (29c)

The superscript Lag is used for the variables in the Lagrangian system. The term FLag is a conservative flux and the latter 
is the non-conservative term. System (28)–(29) is numerically approximated in the following.

3.3.2. HLLC-type solver for the acoustic submodel in Lagrangian coordinates
An HLLC-type Riemann solver [41] is used to solve the acoustic system (28)–(29). The finite-volume approximation of 

Eqs. (28)–(29) on each mesh element [x j−1/2, x j+1/2] follows from integration over the mesh element and assuming a 
constant density in the m variable and constant interfacial term in each element, and reads

∂t

((
QLag

)
j

)
+ 1


m j

((
FLag

)HLLC

j+1/2
−

(
FLag

)HLLC

j−1/2

)
+ 1


m j
BLag

((
QLag

)
j

)(
u∗

j+1/2 − u∗
j+1/2

)
= 0, (30)

with 
m j = ρn
j 
x. In this paper we employ the classical finite-volume notation in which subscript j refers to a cell average 

and j + 1/2 to a cell boundary. The HLLC-type numerical flux vector 
(

FLag
)HLLC

, which approximates FLag
(
QLag

)
, is 

obtained by applying the HLLC-type relations across the three different waves with eigenvalues (26), see Fig. 1. Using (27)
we notice that the velocity and pressure, which are the only two variables involved in the fluxes, are the Riemann invariants 
of the LD middle wave. The HLLC-type relations across the left and right waves for the momentum equation are given by

p∗
j+1/2 = p j − a j+1/2

(
u∗

j+1/2 − u j

)
, (31a)

p∗
j+1/2 = p j+1 + a j+1/2

(
u∗

j+1/2 − u j+1

)
, (31b)

where the acoustic impedance a j+1/2 at the interface is estimated using the direct computation of the eigenvalues of the 
acoustic submodel:

a j+1/2 = max(ρ jc j,ρ j+1c j+1). (32)

This leads to a single-state HLLC numerical flux-vector:

(
FLag

)HLLC

j+1/2
= (−u∗, p∗, p∗u∗,0,0

)
j+1/2 , (33)

where
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u∗
j+1/2 = u j + u j+1

2
+ p j − p j+1

2a j+1/2
, (34a)

p∗
j+1/2 = p j + p j+1

2
+ a j+1/2

2
(u j − u j+1). (34b)

The interfacial term of the topology equation is approximated at first order by

K n
j

(
u∗

j+1/2 − u∗
j−1/2

)
. (35)

Summarizing and using an explicit forward Euler time step, the update formula for the discretized acoustic system reads:

(
QLag

)n+1−
j

=
(

QLag
)n

j
− 
t

ρn
j 
x

((
FLag

)HLLC,n

j+1/2
−

(
FLag

)HLLC,n

j−1/2

)
− K n

j

t


x

((
HLag

)n

j+1/2
−

(
HLag

)n

j−1/2

)
,

(36)

where(
HLag

)T = (0,0,0,0, u∗). (37)

The numerical experiments in Section 4 employ this update formula.

3.3.3. Update of the acoustic submodel in Eulerian variables
The update formulae for the discretized acoustic system in terms of the Eulerian variables from (1) are a reformulation 

of those in (36)–(37) and read:

R jρ
n+1−
j = ρn

j , (38a)

R j (ρu)n+1−
j = (ρu)n

j − 
t


x

(
p∗

j+1/2 − p∗
j−1/2

)
, (38b)

R j (ρE)n+1−
j = (ρE)n

j − 
t


x

(
p∗

j+1/2u∗
j+1/2 − p∗

j−1/2u∗
j−1/2

)
, (38c)

(Y1)
n+1−
j = (Y1)

n
j , (38d)

(α1)
n+1−
j = (α1)

n
j − K n

j

t


x

(
u∗

j+1/2 − u∗
j−1/2

)
, (38e)

where R j is given by

R j = 1 + 
t


x

(
u∗

j+1/2 − u∗
j−1/2

)
. (39)

Some properties of the numerical scheme, presented in Section 3.6, employ these update formulae in their derivation.

3.4. Numerical solution of the convective submodel

The convective system is approximated by using a classical upwind finite-volume scheme as employed in Chalons et al. 
[29]. Making again a forward Euler time step, the scheme reads:

ϕn+1
j = ϕn+1−

j − 
t


x

(
u∗

j+1/2ϕ
n+1−
j+1/2 − u∗

j−1/2ϕ
n+1−
j−1/2

)
+ 
t


x
ϕn+1−

j

(
u∗

j+1/2 − u∗
j−1/2

)
, (40)

where ϕ ∈ {ρ,ρu,ρE,ρY1,α1}. The upwind value is used to approximate the interface value ϕ j+1/2:

ϕn+1−
j+1/2 =

⎧⎨
⎩

ϕn+1−
j , if u∗

j+1/2 ≥ 0,

ϕn+1−
j+1 , if u∗

j+1/2 < 0.
(41)

3.5. Stability requirement

The common time step in the explicit time integration method is obtained using the Courant numbers of both subsys-
tems. The Courant numbers are given by

Ca = 
t
maxλa

j, (42)


x j
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with maximum wave speed λa
j = max

(
τn

j , τ
n
j+1

)
a j+1/2, for the acoustic subsystem, and by

Cc = 
t


x
max

j
λc

j, (43)

with the maximum wave speed λc
j =

(
u∗

j−1/2

)+ −
(

u∗
j+1/2

)−
, for the convective subsystem, where b± = (b ± |b|)/2. The 

time step is determined by the requirement that both Courant numbers need to be less than one. In the implementation, 
the most severe time step restriction is taken for both subsystems. Hence, the time step size is selected with the Courant 
number C = max

(
Ca,Cc

)
. The Courant number for the classical direct approaches is defined by

Cd = 
t


x
max

j

(|u j+1/2| + c j+1/2
)
. (44)

3.6. Main properties of the operator splitting scheme

3.6.1. Conservation of mass, momentum, energy and partial mass
The scheme of the convective system (40) can be written as:

ϕn+1
j = R jϕ

n+1−
j − 
t


x

(
u∗

j+1/2ϕ
n+1−
j+1/2 − u∗

j−1/2ϕ
n+1−
j−1/2

)
, (45)

where R j is defined by (39). Substitution of (38) into this form leads to the update formulae

(ρ)n+1
j = (ρ)n

j − 
t


x

(
u∗

j+1/2ρ
n+1−
j+1/2 − u∗

j−1/2ρ
n+1−
j−1/2

)
, (46a)

(ρu)n+1
j = (ρu)n

j − 
t


x

(
u∗

j+1/2(ρu)n+1−
j+1/2 + p∗

j+1/2 − u∗
j−1/2(ρu)n+1−

j−1/2 − p∗
j−1/2

)
, (46b)

(ρE)n+1
j = (ρE)n

j − 
t


x

(
u∗

j+1/2(ρE)n+1−
j+1/2 + p∗

j+1/2u∗
j+1/2 − u∗

j−1/2(ρE)n+1−
j−1/2 − p∗

j−1/2u∗
j−1/2

)
, (46c)

(ρY1)
n+1
j = (ρY1)

n
j − 
t


x

(
u∗

j+1/2(ρY1)
n+1−
j+1/2 − u∗

j−1/2(ρY1)
n+1−
j−1/2

)
, (46d)

which guarantee the conservation of mass, momentum, energy and partial mass of the proposed approach. Please notice 
that the choice of u∗

j+1/2 in the transport scheme makes it possible to have a fully conservative scheme for the conservative 
variables [29]. Due to the non-conservative form of the topology equation, there is no conservation of the volume fraction.

3.6.2. Positivity of the volume fraction and mass fraction
Using the definition of the interfacial variable (11), the update formula (38e) of the volume fraction in the acoustic 

system can be written as

(α1)
n+1−
j = (α1)

n
j

⎡
⎣1 − 
t


x
(α2)

n
j

(
ρ2c2

2

)n
j − (

ρ1c2
1

)n
j

(α2)
n
j

(
ρ1c2

1

)n
j + (α1)

n
j

(
ρ2c2

2

)n
j

(
u∗

j−1/2 − u∗
j+1/2

)⎤
⎦ . (47)

Since (α1)
n
j ≥ 0, positivity of the volume fraction is ensured when the part within the brackets is positive, i.e.

An
j

t


x

(
u∗

j−1/2 − u∗
j+1/2

)
≤ 1, (48)

where
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j = (α2)

n
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(
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2
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ρ1c2
1

)n
j

(α2)
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(
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. (49)

The observations (
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, (50a)
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, (50b)
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Table 1
Initial values and material properties for the translating interface problem.

(a) Initial values (b) Material properties

ρ u p Y1 α1 γ

Fluid 1 1000 1.0 1.0 1.0 1.0 Fluid 1 1.4
Fluid 2 1.0 1.0 1.0 0.0 0.0 Fluid 2 1.6

Fig. 2. Translating interface problem–density profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.1.

and 0 ≤ (α2)
n
j ≤ 1 imply that An

j ≤ 1. Using the CFL-type condition given in Section 3.5, we obtain


t


x

(
u∗

j−1/2 − u∗
j+1/2

)
≤ 
t


x

[(
u∗

j−1/2

)+ −
(

u∗
j+1/2

)−]
≤ 1. (51)

Positivity of the volume fraction is thus ensured by combining the results. Note that the upper bound (α1)
n+1−
j ≤ 1 is a 

direct consequence of this result. The update formula (38d) ensures the positivity of the mass fraction.

4. Numerical results

To illustrate the behavior of the proposed scheme, it is evaluated for five two-phase flow problems encountered in the 
literature: a translating interface problem, a pressure jump problem, a no-reflection problem, a water–air mixture problem 
and a two-phase cavitation problem.

All five test cases are defined such that no wave hits a boundary before the prescribed end time. All test cases are 
also computed using the direct HLLC-type approach proposed by Daude et al. [17]. The tests are performed with first-order 
accuracy in space and time. For each test, the Courant numbers of the current splitting approach and the direct approach 
are taken equal: C = Cd . The comparisons are performed using the same number of cells. The convergence rates are shown 
for each test case where an analytical solution is available. To compare the performance of both methods, the number of 
time steps and the CPU times are reported.

4.1. Translating two-phase interface

In this first test case, also considered in e.g. [21], a dense fluid and a much less dense gas move to the right, at constant 
velocity and pressure. The initial interface is located in the middle of the tube (x = 0.0) of length L = 0.5. This test case is 
considered to assess the behavior of the present scheme at a material interface with a density jump which is representative 
for that of the important class of water–air flows.

The initial values and material properties are given in Table 1. Two perfect gases are considered (π1 = π2 = 0, η1 =
η2 = 0), with the difference for both fluids only in γ . The depicted results have been obtained at time t = 0.1 with N = 400
cells and a Courant number C = 0.95. The distributions of the primitive variables are visualized in Figs. 2 to 5 and the 
convergence rates of the density variable are listed in Table 2.

The results obtained with the proposed splitting-based method are very similar to the ones obtained with the direct 
approach from [17]. The contact discontinuity is well retrieved with both methods, whereas the velocity and pressure 
profiles are perfectly constant; no pressure oscillations occur across the interface. The location of the two-phase interface 



M.F.P. ten Eikelder et al. / Journal of Computational Physics 331 (2017) 188–208 197
Fig. 3. Translating interface problem–velocity profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.1.

Fig. 4. Translating interface problem–pressure profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.1.

Fig. 5. Translating interface problem–volume and mass fraction profiles: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.1.

for the mass fraction is a bit off (see Fig. 6), for both the proposed method and the direct approach from [17]. This is also 
the case for the method proposed in [21]. In the region where the material interface is smeared due to intrinsic numerical 
dissipation of the two numerical schemes, the associated cells contain both fluids with α2ρ2 � α1ρ1 which gives a value 
of Y1 close to 1. With a finer mesh, the correct location is obtained, see also Table 2. At the end time t = 0.1 the contact 
discontinuity is indeed located at x = 0.1. The proposed method captures the location slightly better. The newly proposed 



198 M.F.P. ten Eikelder et al. / Journal of Computational Physics 331 (2017) 188–208
Table 2
The L1-convergence rates for the density of the translating in-
terface problem. The convergence rates are computed as cN =
log(eN/e2N )/ log(2). The errors are given by eN = ‖sN − sexact‖L1 , 
where sN is the solution computed with N grid points, sexact the 
exact solution, and ‖ · ‖L1 the standard L1-norm.

Convergence rates Splitting Direct

c40 0.67 0.56
c80 0.64 0.53
c160 0.63 0.52
c320 0.60 0.51
c640 0.57 0.50

Fig. 6. Translating interface problem–zoom at contact discontinuity: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.1.

Table 3
Initial values and material properties for the two-pressure jump problem. The dimensions of the quantities ρ, u and p are kg m−3, 
m s−1 and Pa, respectively.

(a) Initial values (b) Material properties

ρ u p Y1 α1 γ

Fluid 1 10 50.0 1.1 · 105 1.0 1.0 Fluid 1 1.4
Fluid 2 1.0 50.0 1.0 · 105 0.0 0.0 Fluid 2 1.1

method takes larger time steps (124 time steps) than the direct approach from [17] (192 time steps). The CPU time is 0.17 s
and 0.36 s for the splitting approach and the direct approach, respectively (averaged over 500 runs on an i5 processor). Both 
methods show similar convergence rates, see Table 2.

4.2. A two-pressure jump problem

In this test case, proposed by Barberon et al. [42] and also considered in [17], the shock tube is again filled with two 
perfect gases with different densities. The pressures at both sides are slightly different. The interface is located at x = 0.5 m. 
Due to the pressure difference, a shock wave will propagate rightwards and a rarefaction wave will propagate leftwards.

The initial values and material properties are given in Table 3. Also here the SG EOS reduces to the PG EOS. The results 
are obtained at time t = 1.0 ms with N = 400 cells for the Courant number of C = 0.95. The distributions of the primitive 
variables at t = 1.0 ms are depicted in Figs. 7–11 and the convergence rates are listed in Table 4.

Again, the results obtained with the proposed method are very similar to the ones obtained with the unsplit approach 
from [17]. The location of the shock wave is accurately captured with both methods, also in the zoom (Fig. 11) no significant 
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Fig. 7. Two-pressure jump problem–density profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 1.0 ms.

Fig. 8. Two-pressure jump problem–velocity profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 1.0 ms.

Fig. 9. Two-pressure jump problem–pressure profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 1.0 ms.

difference is visible. Also for this test case, the newly proposed method takes larger time steps (149 time steps) than the 
direct approach from [17] (166 time steps). The CPU time is 0.26 s and 0.69 s for the splitting approach and the direct 
approach respectively (averaged over 500 runs on an i5 processor). Again, both methods show similar convergence rates, 
see Table 4.
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Fig. 10. Two-pressure jump problem–mass and volume fraction profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 1.0 ms.

Fig. 11. Two-pressure jump problem–zoom: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 1.0 ms.

Table 4
The L1-convergence rates for the two-pressure jump problem. The convergence rates are computed as cN = log(eN /e2N )/ log(2). The errors are given by 
eN = ‖sN − sexact‖L1 , where sN is the solution computed with N grid points, sexact the exact solution, and ‖ · ‖L1 the standard L1-norm.

Convergence rates Physical quantity

ρ u p Y1 α1

Splitting approach
c40 0.43 0.69 0.65 0.88 0.41
c80 0.54 0.59 0.49 0.31 0.56
c160 0.50 0.65 0.59 0.51 0.50
c320 0.50 0.58 0.54 0.50 0.50
c640 0.50 0.59 0.56 0.50 0.50

Direct approach
c40 0.42 0.70 0.69 0.86 0.40
c80 0.54 0.56 0.46 0.30 0.56
c160 0.50 0.69 0.61 0.51 0.49
c320 0.50 0.59 0.54 0.50 0.50
c640 0.50 0.62 0.58 0.50 0.50
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Table 5
Initial values and material properties for the no-reflection problem.

(a) Initial values (b) Material properties

ρ u p Y1 α1 γ

Fluid 1 3.1748 9.4350 100 1.0 1.0 Fluid 1 1.667
Fluid 2 1.0 0.0 1.0 0.0 0.0 Fluid 2 1.2

Fig. 12. No-reflection problem–density profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.

Fig. 13. No-reflection problem–velocity profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.

Fig. 14. No-reflection problem–pressure profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.
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Fig. 15. No-reflection problem–mass and volume fraction profile: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.

Fig. 16. No-reflection problem–zoom at bumps: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.

4.3. No-reflection problem

The third test we perform is the so-called no-reflection problem, which is also assessed in [21]. In this test case, the 
right state is initially at rest and the left state moves towards the right state. The density and pressure of the left state are 
high compared with the right state. This will cause the two-fluid interface and the shock wave to move rightwards. The 
initial conditions of the perfect gases are chosen such that no reflection wave occurs.

The initial values and material properties are given in Table 5. The results are obtained at time t = 0.02 with N = 400
cells with a CFL number of C = 0.95. The results are visualized in Figs. 12–17 and the convergence rates are listed in Table 6.

The location of the contact discontinuity is satisfactorily retrieved with both methods. A small reflected wave is visible at 
around x = 0.05, which is weaker for the splitting-based scheme (see Fig. 16). For both methods it vanishes when refining 
the grid. The shock wave is well retrieved with both methods. The newly proposed method seems to be less diffusive than 
the direct approach (see Fig. 17). Again, the newly proposed method takes larger time steps (169 time steps) than the direct 
approach from [17] (285 time steps). The CPU time is 0.25 s and 0.33 s for the splitting approach and the direct approach, 
respectively (averaged over 500 runs on an i5 processor).
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Fig. 17. No-reflection problem–zoom at shock wave: exact solution “–”, splitting approach “◦” and direct approach “+” at t = 0.02.

Table 6
The L1-convergence rates for the no-reflection problem. The errors are computed as eN = ‖sN − sexact‖L1 , where sN is the solution computed with N grid 
points, sexact the exact solution, and ‖ · ‖L1 the standard L1-norm.

Fraction errors Physical quantity

ρ u p Y1 α1

Splitting approach
c40 0.69 1.05 1.04 0.50 0.45
c80 0.82 1.33 1.22 0.52 0.46
c160 0.57 0.83 0.90 0.52 0.45
c320 0.57 0.80 0.82 0.43 0.50
c640 0.68 1.27 1.22 0.43 0.50

Direct approach
c40 0.44 1.03 0.86 0.42 0.42
c80 0.54 1.17 0.93 0.42 0.38
c160 0.50 0.87 0.90 0.45 0.39
c320 0.51 0.81 0.91 0.41 0.42
c640 0.56 1.20 1.06 0.44 0.45

4.4. Water–air mixture problem

In this shock tube test we consider a water–air mixture problem. This test case has been considered by Murrone and 
Guillard [20] and by Kreeft and Koren [21]. In contrast to the previous test cases, the shock tube is now filled with a mixture 
of water and air (0 < Y1, α1 < 1) and stiffened gases are considered. Both mixture states are initially at rest and the initial 
pressure ratio is 104.

The initial values and material properties are given in Tables 7 and 8. Numerical results are obtained at time t = 200 μs
with N = 400 cells with CFL number C = 0.95. The results are visualized in Figs. 18–22.

The numerical results are in good agreement with numerical solutions from Murrone and Guillard [20]. The volume 
fraction distribution on the right side of the middle wave shows slightly different values for all three schemes. The numerical 
solution from [20] shows a slightly lower value compared with the splitting-based method and a slightly higher value than 
the HLLC-type scheme. This test case indicates that the proposed method can also deal with mixture problems. Also for this 
test case, the newly proposed method takes larger time steps (179 time steps) than the direct approach from [17] (giving 
193 time steps). The CPU time is 0.25 s and 0.38 s for the splitting approach and the direct approach, respectively (averaged 
over 500 runs on an i5 processor).

4.5. Two-phase cavitation problem

In this test case proposed by Saurel et al. [19] the tube is filled with water and its vapor at atmospheric pressure. Thus 
a mixture of the fluids is considered: initially the water (with density ρ2 = 1150 kg m−3) contains a small portion of vapor 



204 M.F.P. ten Eikelder et al. / Journal of Computational Physics 331 (2017) 188–208
Table 7
Initial values and material properties for the water–air mixture problem. The dimensions of the 
quantities ρ , u and p are kg m−3, m s−1 and Pa respectively.

ρ u p Y1 α1

Left chamber 525 0.0 109 0.0476 0.5
Right chamber 525 0.0 105 0.9524 0.5

Table 8
Material properties for the water–air mixture problem. The dimen-
sions of the quantities π and η are Pa and J kg−1 respectively.

γ π η

Fluid 1 1.4 0.0 0.0
Fluid 2 4.4 6 · 108 0.0

Fig. 18. Water–air mixture problem–density profile: numerical solution from [20] “x”, splitting approach “◦” and direct approach “+” at t = 200 μs.

Fig. 19. Water–air mixture problem–velocity profile: numerical solution from [20] “x”, splitting approach “◦” and direct approach “+” at t = 200 μs.

α1 = 10−2 (with density ρ1 = 0.63 kg m−3). The mixture has diverging initial velocities left and right, i.e. there is an initial 
velocity discontinuity at x = 0.0 m.

The initial values and material properties are given in Tables 9 and 10. Numerical results are presented at time t = 3.2 ms
with N = 400 cells. A smaller time step (CFL = C = 0.01) is used due to the strong rarefaction wave. The results are 
visualized in Figs. 23–26.

Both methods give very similar results, consistent with those obtained in [19,43–45]. The density and volume fraction 
profiles obtained with the splitting approach show some overshooting in the middle region. This test case indicates that 
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Fig. 20. Water–air mixture problem–pressure profile: numerical solution from [20] “x”, splitting approach “◦” and direct approach “+” at t = 200 μs.

Fig. 21. Water–air mixture problem–volume fraction profile: numerical solution from [20] “x”, splitting approach “◦” and direct approach “+” at t = 200 μs.

Fig. 22. Water–air mixture problem–zoom: numerical solution from [20] “x”, splitting approach “◦” and direct approach “+” at t = 200 μs.

a strong rarefaction wave is well retrieved with both methods. Again, the newly proposed method takes larger time steps 
(14303 time steps) than the direct approach from [17] (14559 time steps). The CPU time is 23.5 s and 27.4 s for the 
splitting approach and the direct approach, respectively (averaged over 10 runs on an i5 processor).
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Table 9
Initial values for the two-phase cavitation problem. The dimensions of the quantities ρ , u and p are 
kg m−3, m s−1 and Pa respectively.

ρ u p Y1 α1

Left chamber 1138.5063 −2.0 105 5.53356 · 10−6 0.01
Right chamber 1138.5063 2.0 105 5.53356 · 10−6 0.01

Table 10
Material properties for the two-phase cavitation problem. The di-
mensions of the quantities π and η are Pa and J kg−1 respectively.

γ π η

Fluid 1 2.35 109 −1167 · 103

Fluid 2 1.43 0 2030 · 103

Fig. 23. Two-phase cavitation problem–density profile: splitting approach “◦” and direct approach “+” at t = 3.2 ms.

Fig. 24. Two-phase cavitation problem–velocity profile: splitting approach “◦” and direct approach “+” at t = 3.2 ms.

5. Conclusions

An acoustic-convective splitting-based scheme has been proposed to solve the Kapila single-pressure single-velocity two-
phase flow model. The acoustic and convective submodels are alternatingly stepped in time to approximate the solution of 
the entire flow model. The model dealing with the acoustic waves has been cast into a Lagrangian form, and solved using an 
HLLC-type solver. This approach gives a simple numerical scheme. The model dealing with the convective waves has been 
approximated using a classical upwind scheme. The method has been evaluated for a variety of shock tube problems, and 
compared with an existing HLLC-type scheme applied to the original (unsplit) Kapila model. The obtained numerical results 
demonstrate the ability of the proposed method to deal with strong discontinuities and mixture flows. They are in good 
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Fig. 25. Two-phase cavitation problem–pressure profile: splitting approach “◦” and direct approach “+” at t = 3.2 ms.

Fig. 26. Two-phase cavitation problem–mass and volume fraction profile: splitting approach “◦” and direct approach “+” at t = 3.2 ms.

agreement with exact and approximate reference solutions. The newly proposed method takes larger time steps than the 
HLLC-type scheme does for the unsplit model originally proposed in [17]. This is most significant in the transonic regime. 
Contact discontinuities, rarefaction waves and shock waves are captured very accurately with both the new method and the 
direct approach. The new method seems to be less diffusive than the direct approach. Furthermore, the splitting approach 
may circumvent the inaccuracies when using approximate Godunov approaches for subsonic flows. The potential of the cur-
rent method to deal with low-Mach number flows is briefly described in [40]. To obtain higher-order temporal accuracy, the 
combination of higher-order methods to solve the systems together with a higher-order splitting approach must be used. 
One approach could be to use a generalized-α or a Runge–Kutta time integrator combined with a Strang splitting approach. 
The proposed approach has a natural extension to multi-dimensional problems.
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