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ABSTRACT

The computation of compressible two-phase flows with the
Kapila five-equation model is studied. In the model (fast) acous-
tic waves and (slow) transport waves occur. In this paper a
splitting-based Lagrange-projection-like numerical scheme for
the Kapila five-equation model is introduced to decouple these
physical phenomena. This approach is based on a Lagrange-
projection method for the gas dynamics equations. The decou-
pling leads to two submodels which are alternately solved to ap-
proximate the solution of the full model. The acoustic submodel
is cast into an almost conservative form and is solved using an
HLLC-type Riemann solver. A classical upwind scheme is used

for the transport part. The method allows for a general equation

of state. Numerical computations are performed for two-phase
shock tube problems, including a mixture problem. The results
are in good agreement with reference results.
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NOMENCLATURE

p Bulk density.

u  Velocity.

p Pressure.

e Bulk internal energy density.

E  Bulk energy density.

¢ Mixture speed of sound.

oy Volume fraction of the fluid k.
Br  Mass fraction of the fluid k.

pr  Density of fluid k.

e, Internal energy density of fluid .
Ey;  Energy density of fluid k.

¢, Speed of sound of fluid k.

Y., Characteristic constants of fluid k.

Copyright © 2016 by ASME

about:blank

3/9/23, 10:00



Firefox

2 0of9

INTRODUCTION

Two-phase compressible flow phenomena arise in many nat-
ural features and industrial applications. Examples are oil-slick
flows at sea, water-air flows in ship hydrodynamics, shock-
bubble-interaction flows, etc. Furthermore, the study of two-
phase flow is a challenging research area. Therefore, this topic is
of interest to both engineers and researchers.

In this paper the five-equation model, which models invis-
cid, non-heat-conducting, compressible two-fluid flow, is con-
sidered. It allows a mixture of the two fluids. The original five-
equation two-phase flow model of Kapila et al. [1] is derived
from the two-fluid flow model of Baer and Nunziato [2]. Mur-
rone and Guillard [3] give an analysis of the five-equation model
and indicate that the reduced five-equation model is a good ap-
proximation of the seven equation two-fluid model. Kreeft and
Koren [4] propose a new formulation of the five-equation model,
in which the topological equation is replaced by an energy equa-
tion. An Osher-type approximation is used for the discretized
system. Daude et al. [5] present computations with the origi-
nal five-equation model of Kapila et al. [1] using an HLLC-type
scheme in the context of Arbitrary Lagrangian-Eulerian formu-
lation. Due to its simplicity, the original five-equation model of
Kapila et al. [1] is considered.

A Lagrange-projection scheme has been developed for the
Euler equations of gas dynamics by Chalons et al. [6]. In our pa-
per their approach is extended to the full two-phase five-equation
model.

In the first section the mathematical model is presented. The
second section is devoted to a detailed description of the new nu-
merical scheme, which is in turn assessed in the third section.
Conclusions are given in the last section.

MATHEMATICAL MODEL

The dynamics of inviscid two-phase flow can be described
by the five-equation model, which is a set of quasilinear hyper-
bolic partial differential equations. It consists of four balance
equations for conservative quantities, which are the bulk mass,
the bulk momentum, the bulk energy, and the mass of one of the
two phases. The fifth equation is a topological equation which
describes the evolution of the volume fraction.

Governing equations
The five-equation two-phase flow model of Kapila et al. [1]
is considered:

ap  +V-(pu) ~0, (12)
d(pu) +V-(pu@u)+Vp =0, (1b)
A (pE) +V-(pEu) +V-(pu)=0, (Ic)
d;(aup1)+V-(oupiu) =0, (1d)

doy +u-Voy +oV-u =0, (le)

where ¢ is the time parameter, V denotes the gradient operator,
p denotes the bulk density, u the velocity, p the pressure and
E the bulk energy density. The variables oy denote the volume
fraction, with the saturation constraint o + 0 = 1, and p; the
density of fluid &, respectively. In terms of single fluid variables,
the bulk density and energy are given by

p = o1p1+ 02p2, (2a)
PE = aupiE1 + 0p2Es, (2b)

where the energy densities of the fluids are

1
Ek:ek+§u»u., 3)

with ¢ the internal energy density of fluid k. The bulk internal
energy density is given by

pe=oypie) + 0parer, 4)
and hence,
1
E=e+ Eu ‘u. (5)

Each phase is governed by an equation of state (EOS) ¢; =
er(px, p), which allows the determination of the speed of sound
of each single phase ¢} = (p/p? — dp,ex)(Ipex)~". The interfa-
cial variable in the topology equation (le) is given by

1 1 o o )
=00 | —s - — —+— - (6)
o= 2<P2(‘% PIC‘?>/<PICT p2c3

To complete the model the stiffened gas (SG) equation of state
(EOS) is used for both fluids, which reads as:

p=prer(%—1) — %em, @)

Copyright © 2016 by ASME

about:blank

3/9/23, 10:00



Firefox

3 0f9

where % and m; are characteristic constants of the thermody-
namic behavior of fluid k. Using the SG EOS (7), the speed
of sound of fluid k can be written as ¢ = % (p + m) /px, and the
bulk internal energy satisfies

o o ) 2]
= o m+ o m. (8
pe p<71—1+)‘z—1>+ 1%_1 1+ 2}'2—1 2. (8)
Mathematical analysis
The five-equation model (1) can be cast, for the one-
dimensional case, into the primitive form

AW +B(W)I,W =0, )
with
p up 000
u 0 u 1/p00
W=|p|, BW)=|[0p? u 00}, (10)
B 00 0 u0
o 0¢ 0 Ou

where B = oyp;/p denotes the mass fraction. Note that the first
three equations, describing the bulk fluid, correspond to the Eu-
ler equations of gas dynamics. The derivation of the primitive
equations (9)-(10) is straightforward and can be found in Kreeft
and Koren [4]. The vector W contains the primitive variables.
The eigenvalues of B(W) are:

M=u—c, Mss=u, As=u+c. (11)
The celerity, denoted by ¢, obeys the Wood formula [7]:

1 [04] o

= 7 30
pet piei  pac3

(12)

which corresponds to the mixture speed of sound. The charac-
teristic fields associated with eigenvalues A, 3 4 are linearly de-
generate (LD) and the other two fields are genuinely nonlinear
(GNL) [3].

NUMERICAL SCHEME

A novel splitting-based Lagrange-projection-like numerical
scheme is presented. First the splitting of the five-equation model
is presented. Next, the treatment of the acoustic model is dis-
cussed for which a simple and robust HLLC-type Riemann solver
is used. Finally, the upwind scheme for the transport submodel
is given.

The splitting approach

The five-equation model deals with two kinds of wave
speeds associated with its eigenvalues, i.e. the GNL waves are
linked to pressure waves whereas the LD wave is connected to
the material velocity. In certain situations, such as subsonic
flows, the ratio between these two velocities can be large leading
to inaccuracy with the use of approximate Godunov approaches.
In order to decouple acoustic and transport phenomena, a split-
ting operator is proposed. This splitting is inspired by the split-
ting of the acoustic and transport waves for the Euler equations
of gas dynamics proposed in [6].

By using chain rule arguments the five-equation model (1)
is split into (i) the acoustic system:

o:p +pV-u =0, (13a)
d(pu) +puV-u +Vp =0, (13b)
o (PE) +pEV-u +V-(pu)=0, (13¢c)
8,(a.p.)+a,p|V-u =0, (13d)
doy  +¢V-u -0, (13¢)

and (ii) the transport system:

a:p +u-Vp =0, (14a)
d;(pu) +u-V(pu) =0, (14b)
A (pE) +u-V(pE) =0, (14¢)
o (a1p1)+u-V(ap1)=0, (144d)
0,0 +u-Vao =0. (14e)

Note that the acoustic system contains all the pressure terms.
Furthermore, the interfacial term of the topological equation is
included in the acoustic system since it is a fast phenomenon (it
includes the speed of sound).

The discretization of (1) consists of successively approx-
imating the solution of the acoustic system and the transport
system. By denoting the fluid state at time n with Q;f =
(p,pu,pE,c1py,n)}, and an intermediate time level with n +
1—, the approximation of one time step reads:

1. Update Qj to Q’}“‘ approximating the solution of the
acoustic system (13);

2. Update Q;“’ to Q’}“ approximating the solution of the
transport system (14).

Mathematical analysis splitting approach

The numerical simulations consist of one-dimensional prob-
lems, and therefore from now on, only the one-dimensional case
is considered. The subsystems (13)-(14) can be cast into the
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primitive forms: (i) for the acoustic subsystem:
AW +A(W)IW =0, (15)

and (ii) for the transport subsystem:

AW+ T(W)o,W =0, (16)
where
B(W) = A(W) +T(W), (17)
with
0p 000
00 1/p00
AW)=[0pc2 0 00 T(W)=uls, (18)
00 000
06 000

and I is the identity matrix in R?*¢. This casting reveals that the
matrix B splits nicely into an acoustic part A and a transport part
T. The eigenvalues of the full system (4;) split into an acoustic
part (@) and a transport part () as follows

M=A+A hsa=A55,+ A5, As =25+ 45,

Al =—c, 2334 =0,

r_ (o
Al =u, Maa=u,

A =c, (19)

| —
AL =u.

The characteristic fields associated with the middle wave 455 , =
0 are linearly degenerate. The other two waves, associated with
Af = —c¢,A§ = c, can be shown, by using a similar argument as
in [3], to be genuinely nonlinear in the non-isobaric case.

Acoustic subsystem
By taking {7,u,E,Bi,0u} as set of variables, the acoustic
system can be cast into the form

4t —thu =0, (20a)
du +1dp =0, (20b)
0 E +1dy(pu)=0, (20c)
9 =0, (20d)
0 +pPTdu=0. (20e)

Here 7 = 1/p denotes the specific volume. Note that again the
first three equations, Eq. (20a)-(20c), describe the bulk fluid,
and the latter two, Eq. (20d)-(20e), describe the evolution of the
fraction variables, which are specific for the five-equation two-
phase flow model.

Note that the second term of each equation (except the fourth
equation) contains the operator td,. By performing the change
of variables (x,7) > (m,t), where the mass variable m is defined
by m(x) := [*p(%,1")dX, this operator can be approximated by
O The Lagrangian system (up to an abuse of notation)

hT —dpu =0, (21a)
du +oup =0, (21b)
GE +0u(pu)=0, (21c¢)
B, —0, @1d)
0,0 +pPIu=0, (21e)

is a first order in time approximation of (20). It can be written in
vectorial form as

alQLAG +a”rgL:\G(QL;\G) -+-.0]L'\G (QL:‘\G’amQL.‘\G) — 0-‘ (22)

where

Q" = (1,u,E, By, ay)7, (23a)
FAG(QHC) = (—u, p, pu,0,0)7, (23b)
F0(QHC,9,,Q4C) = (0,0,0,0,p ¢ yu)” . (23¢)

The superscript LAG refers to Lagrangian variables. The term
FA6 i5 a conservative flux and the term .Z-% contains the non-
conservative term.

HLLC-type solver for acoustic subsystem

An HLLC-type Riemann solver [8] is used to solve the
acoustic subsystem. The finite-volume approximation of the
acoustic system (22)-(23) on cell C; reads

. 1 . ~ . ~
3 ((QA9),) _{_m ((FLA(,)g_Lb(__; _ (FL,\(.)?*_Lbé)
(24
+ [ #((Q“*°),) dnudV =0,
Ci

where the numerical flux F**S approximates .7 % ((Q"*9)) and

‘,,]LAG (QLAG. amQLAG) — %) (QLAG) am“‘ (25)
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with 2 (Q“*%) = (0,0,0,0,p¢)”. The corresponding HLLC flux
vector consists of a single state:

5y HLLC ¥ %
(FLM’),H/2 =(—u",p",p'u .0,0)iﬂ/z, (26)
where
* _ Uit Uiy) | Pi— Piy
ui+|/2 - 2 2ai+l/2 ’ (273)
- i+ Pi ajy1/2
Piv12= % + %(ui —Uiy1), (27b)

and where the acoustic impedance a; ), at the interface is ap-
proximated using the choice of Chalons et al. [6]:

iy 172 = max(pici, Pit1Civ1)- (28)

The interfacial term of the topology equation is approximated at
first order by

/C,- OnudCi = 7; ("7+1/2 - ”Ll/z) . (29)

Summarizing, the update formula for the discretized acoustic
system reads, making an explicit forward Euler time step:

At
- _
Q:"Jr =Q _p!’Ax (F;'H/Z _F:‘I—I/Z)
1

(30)

o .nﬂ(, on — )

Ay \ 72 TRi=12 )

where
Q)" = (r,u.E,Br, )i, (31a)
T
(Fiip) = p'a 0,00, 0 Glb)
n r *=\n

(#12) =(0,0,0,0,u),, 5. (3lc)

Transport system

The transport system is approximated by using a classical
finite-volume upwind scheme as employed in Chalons et al. [6].
The scheme reads, making again an explicit forward Euler time
step:

At
1 ikl * b "
vt =t T Ax (ui+l/20i”4.—+|/2 —u,._l/zv;'jl/z)
(32)
+£vf'+l_ (uf‘ —u; )
Al i+1/2 7 Ti-1/2 )0

where v € {p,pu,pE,a1p1,0n}. The upwind value is used to
approximate the interface value ;1 5:

n+1- - *
L v; if Ui >0,
U,»+|/2 - n+l— if * 0 (33)
Vipr o g, <0

Stability requirement

The time step in the explicit time integration method is
obtained using the Courant numbers of both subsystems. The
Courant numbers are given by

At n Jn
G = 1 max (max (7, 7y1)aic ) (34)

1

for the acoustic subsystem, and by

€ = %mlax ((u;‘_l/z)Jr B (u;.‘“/z)_) , (35)

for the transport subsystem, where b* = (b= |b|)/2. The time
step is determined by the requirement that the Courant numbers
need to be less than one. In the implementation, the most severe
time step restriction is taken for both subsystems. Hence, the
time step is selected with ¢ = max (¢,, ;).

SHOCK TUBE TEST CASES

The robustness and accuracy of the novel Lagrange-
projection-like numerical scheme is assessed. The considered
test cases are shock tube problems in which a left fluid state and
aright fluid state are separated by a membrane, see Figure 1.

“‘ Right state

FIGURE 1. A schematic view of a shock tube with two fluid states.

At the open ends of the shock tube transmissive boundary con-
ditions are imposed. The numerical method is evaluated in the
following three two-phase shock-tube problems: a translating in-
terface problem, a pressure jump problem and a mixture prob-
lem. All tests are performed in one dimension, with first order
accuracy in space.
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Translating two-phase interface

In this first test case, also used by e.g. [4], a dense gas
pushes, at constant velocity and pressure, a much less dense gas
rightwards. The interface is located at the middle of the shock
tube (X = 0.5). This test case is assessed to investigate the be-
havior of the scheme at a contact discontinuity.

p u | p | B| o
Left state || 1000 | 1.0 | 1.0 | 1.0 | 1.0
Rightstate | 1.0 | 1.0 | 1.0 | 0.0 | 0.0

TABLE 1. Initial values pressure jump problem.

The initial conditions are given in Table 2. The thermodynamic
constants are ¥ = 1.4, 1 = 0.0, p» = 1.6, m» = 0.0. The results
are obtained at time t = 0.1 s with N = 400 cells for the Courant
number % = 0.95. The distributions of the primitive variables
are visualized in the Figures 2-5.

1000 exact | |
O approx
e
J
800 - d 4
q
600 - 4
=
(2]
c
3
400 - 1
D
D
200 b 1
o
2
or %

-025 -02 -0.15 -01 -005 O 005 01 015 02 025
X

FIGURE 2. Test | - Density distribution along tube at t = 0.1 s.

The contact discontinuity is well retrieved with the proposed
method. The location of two-phase interface for the mass frac-
tion, see Figure 5, is a little bit off, similar as in [4]. Furthermore,
no oscillations and no over- and undershoots are visible.

1.01 T T T T T T T T T

1.008F | o approx E
1.006 | -

1.004

T
1

1.002 - 1

Velocity

T
L

0.998

0.996

T
1

0.994 - 1

0.992 1

0.99 L L s L " L L s L
-025 -02 -015 01 -005 O 005 01 015 02 025
X

FIGURE 3. Test | - Velocity distribution along tube at = 0.1 s.

1.01 T T T T T T T T T

T
o
ER
8 5
S8
<

1

1.008

1.006 - 1

1.004

1.002 | 1

Pressure

0.998 - 1

0.996

0.994

0.992

0.99 L L s L L L L s L
025 -02 -015 01 -005 O 005 01 015 02 025

FIGURE 4. Test | - Pressure distribution along tube at t = 0.1 s.

A pressure jump problem

In this test case, proposed by Barberon et al. [9] and used in
e.g. [5], a shock tube is filled with two gases at different density.
The pressures at both sides are slightly different. The interface
is located at X = 0.5 m. Due to the pressure difference, a shock
wave will propagate rightwards.

The initial conditions are given in Table 2. The thermodynamic
constants are ¥, = 1.4, m; = 0.0, o = 1.1, m = 0.0. The dimen-
sions of the quantities p,u, p and 7 are kg m~3, m s~ and Pa,
respectively. The results are obtained at time r = 1.0 ms with
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1.2 12
exact exact
, O approx , O approx
% 3
o
0.8 9 08} 5
S 5 o
g 0sr g o8y 1
@ = o
(2]
S 04 1 é 04F E
(=]
= g 5
021 o 9 02F 8
o} (o]
L 3
of ot e
-0.2

0 005 01 015 0.2
X

02 " " " "
0 005 01 015 0.2

X

Density (kg/ms)

L 1

1

2.0 Q0

1

exact
O approx

02 03

0.4

0.5
X(m)

FIGURE 5. Test 1 - Volume fraction (left) and mass fraction (right)
distribution along tube at t = 0.1 s.

p | | B @
Left state 10 [ 50.0 | 1.1x10° [ 1.0 | 1.0
Right state || 1.0 | 50.0 | 1.0 x 10° | 0.0 | 0.0

TABLE 2. Initial values pressure jump problem.

N =400 cells for 4 = 0.95. The distributions of the primitive
variables are visualized in the Figures 6-9.

The location of the shock wave is satisfactorily retrieved with the
proposed method. Furthermore, no oscillations and no over- and
undershoots are visible.

Water-air mixture problem

In this shock tube test we consider a water-air mixture
problem. This test case has been considered by Murrone and
Guillard [3] and by Kreeft and Koren [4]. In contrast to the
previous test cases, the shock tube is now filled with a mixture of
water and air (0 < fj, 04 < 1). Both mixture states are initially
at rest. The pressure ratio is 10*.

The initial conditions are given in Table 3. The thermodynamic
constants for the SG EOS are y; = 1.4, m; = 0.0, p» = 4.4,
7 = 6.0 x 108, Again, the dimensions of the quantities p,u, p
and 7 are kg m—3, m s~! and Pa, respectively. Numerical
results are obtained at time t = 200 us with N = 400 cells with
¢ = 0.95. The results are visualized in Figures 10-13.

FIGURE 6. Test 2 - Density distribution along tube at r = 1 ms.

;\% f
55 b ‘: 1
o
P q
@54 - - C -
E
2531 1
Q
o C
[
¢
> 5t g 1
q
3 B
511 § S
50 L

49 . . . . .
0 01 02 03 04 05 06 07 08 09 1

X(m)

FIGURE 7. Test 2 - Velocity distribution along tube at f = 1 ms.

p | u | p B a

Fluid 1 || 525 | 0.0 | 10° | 0.0476 | 0.5
Fluid2 || 525 | 0.0 | 10° | 0.9524 | 0.5
TABLE 3. [Initial values water-air mixture problem.

The numerical results are compared with numerical
solutions from [3]. The distributions are in perfect agreement
with the reference solutions. The volume fraction distribution
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Pressure (Pa)
8

=3
&
T

1+
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L
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1 1 n L
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FIGURE 8. Test 2 - Pressure distribution along tube at f = 1 ms.
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3 04f 1 & oaf
e = U D
b
0.2 1 02 D
o
0 0
-0.2 . -0.2
0 0.5 1 0 0.5 1
X(m) X(m)

FIGURE 9. Test 2 - Volume fraction (left) and mass fraction (right)
distribution along tube at t = 1 ms.

of [3], in Figure 13, shows on the right side a little lower value
compared with the proposed method. Again, no oscillations and
no over- and undershoots are visible. This test case indicates
that the numerical scheme can deal with mixture problems.

CONCLUSION

A novel splitting-based Lagrange-projection-like numeri-
cal scheme is presented for the Kapila five-equation model in
which pressure and velocity equilibrium between the phases is

T T T T T T T T T
X refsol

1000 O approx 1

900 )6 1

800 1

700

XX OXEXANK

Density (kg/m3)

500

300 1
0 01 02 03 04 05 06 07 08 09 1
X(m)

FIGURE 10. Test 3 - Density distribution along tube at r = 200 us.

700 T T T T T T T T T

X refsol
L O approx

Velocity (m/s)
w
8

X0

0 01 02 03 04 05 06 07 08 09 1
X(m)

FIGURE 11. Test 3 - Velocity distribution along tube at t = 200 us.

assumed. The model is decomposed into an acoustic and a trans-
port part. The acoustic part is cast into Lagrangian formulation
and is solved using an HLLC-type scheme. The transport sub-
system is solved using a classical upwind scheme.

The assessed shock tube test cases show that the obtained
numerical results are in good agreement with reference results.
Current work concerns the development of the numerical scheme
for low-Mach number cases.
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0 01 02 03 04 05 06 07 08 09 1
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FIGURE 12. Test 3 - Pressure distribution along tube at r = 200 us.

0.7

T T
O approx
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e o e o
w IS 3] =
T T T

Volume fraction

o
o
T

o

0 s L L s L s L L L
0 0.1 02 03 04 05 06 07 08 09 1

X(m)

FIGURE 13. Test 3 - Volume fraction distribution along tube at t =
200 ps.
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